CompSci 201, L16:
Binary Search Trees

Logistics, Coming up

* APT7 (sorting problems) due today Wednesday
10/26

* Midterm exam 2 this Wednesday 10/26

* Project 4: Autocomplete due next Monday 10/31

Public Service Announcement:
Spring 2023 Registration

Registration Windows for Spring 2023

All students must have a student record free of administrative and financial holds to be able to register in DukeHub.
Divinity School, Pratt School of Engineering (undergraduate), School of Nursing, and Trinity College of Arts & Sciences
all require students to meet with an advisor and be marked eligible to enroll for the term prior to registration. All other
students are strongly encouraged to consult an advisor before registering for classes in DukeHub.

Graduate and Professional Students, Wednesday, November 2, 7:00 AM
Seniors, Thursday, November 3, 7:00 AM

Juniors - (last two digits of the Student ID)
50-99, Friday, November 4, 7:00 AM
00-49, Monday, November 7, 7:00 AM

Sophomores - (last two digits of the Student ID)
50-99, Tuesday, November 8, 7:00 AM
00-49, Thursday, November 10, 7:00 AM

First Year - (last two digits of the Student ID)

50-99, Friday, November 11, 7:00 AM . _ . . -
00-49, Monday, November 14, 7:00 AM registrar.duke.edu/registration/about-registration

10/24/22 Compsci 201, Fall 2022, Binary Search Trees 3

https://registrar.duke.edu/registration/about-registration

CS Advising and Book bagging

e Considering a major/idm/minor/concentration?
There are many pathways!

* Computer Science Majors
* B.S. or B.A., same core CS requirements, different math
and eIectlves requirements.

* Interdepartmental Majors: 7 from CS, 7 from
another

e CS+Stats Data Science, CS+Math Data Science,
CS+Linguistics, CS+VSM Computational Media.

* Computer Science Minor: 5 CS courses

10/24/22 Compsci 201, Fall 2022, Binary Search Trees

https://www.cs.duke.edu/undergrad/bs
https://www.cs.duke.edu/undergrad/ba
https://www.cs.duke.edu/undergrad/idm/statistics
https://www.cs.duke.edu/undergrad/idm/mathematics
https://www.cs.duke.edu/undergrad/idm/linguistics
https://aahvs.duke.edu/computational-media-interdepartmental-major
https://www.cs.duke.edu/undergrad/minor

210 — software oriented
250 — hardware oriented Systems, choose >=1 course

CS 310 Operating Systems
Current Major Comptiter Syeter CS 316 Databases

Computer Systems

Requirements OR CS 250D CS 350 Digital Systems
. Computer CS 351 Security
in CS Architecture

CS 356 Networks

CS 201 Data :
il Plus electives and

Algorithms math/stats classes

CS 230 Discrete

CS 330 Design
Math for
Computer Science

and Analysis of
Algorithms

Can substitute with
extra math/stats
classes

10/24/22 Compsci 201, Fall 2022, Binary Search Trees

Common post-201 CS Courses
available in Fall 2022

Next Required CS major courses:

* CS 210D Intro to Computer Systems OR CS 250D
Computer Architecture.

e CS 230 Discrete Math for Computer Science.

Some electives in Sp 23 with no other preregs (not
exhaustive of the options!)

* CS 216 Everything Data
* CS 240 Race Gender Class & Computing
* CS 290-01 10S Mobile App Development

Priority Queue in the Abstract

Operations Priority queue Queue sorted by
E:gﬁ:ﬂi :1 Priority: 7 || Priority: 7 || Priority: 11 priority instead of
Enqueue 5 . End insertion order.
Enqueue 7

Dequeue

Dequeued item

Priority: 5

Dequeue removes from the front of the queue, which is always the highest
priority item.

Zybook

10/24/22 Compsci 201, Fall 2022, Binary Search Trees 7

java.util.PriorityQueue Class

* Kept in sorted order, smallest out first

* Objects must be Comparable OR provide
Comparator to priority queue

PriorityQueue<String> pg = new PriorityQueue<>(

PriorityQueue<String> pg = new PriorityQueue<>();
Comparator.comparing(String::length));

pg.add("is");)
pq.add("Compsci 201"); pq.add("ls");'
pg.add("Compsci 201");

Pg.add("wonderful"); pq.add("wonderful");
while (! pg.isEmpty()) { while (! pg.isEmpty()) {

System.out.println(pg.remove()); System.out.println(pg.remove());
} }
Compsci 201 is
is wonderful
wonderful Compsci 201

10/24/22 Compsci 201, Fall 2022, Binary Search Trees 8

WOTO
Go to duke.is/w7jv8

Not graded for correctness,
just participation.

Try to answer without looking
back at slides and notes.

But do talk to your neighbors!

https://duke.is/w7jv8

Inefficient DIY Priority Queue with
Plain Old ListNodes

Design for a lazy priority Class

gqueue. public class lazyPriorityQueue {
.] . private class ListNode {...}
 Invariant: Keep the list A e
E;()rtEBCj private int mySize;
* Always remove first (least) lazyPriorityQueve()
node and update myFirst s

mySize = 0;

 To add, need to search for }
correct in-order position

Complexity of Inefficient Lazy DIY
Priority Queue

e Peek: O(1) — Just get value of first node
 Remove: O(1) — Just remove first node
e Add: O(N) — Need to search linked list

Alternative, if we had left the list unsorted...
* Peek/Remove: O(N) — Have to search
e Add: O(1) — Just add to front of list

Tradeoffs, Heaps, and Trees

* Fast add and remove? 102 Log-ZéNG)
e Binary Heap: Implements a 200 7.6
priority queue with: 400 8.6

o . 800 9.6
Peek: O(l) 1600 10.6

* Remove: O(log(N)) 3200 11.6

e Add: O(log(N)) 6400 12.6

] . . . : 12800 13.6
e java.util PriorityQueueis 25600 14.6

implemented as a binary heap 51200 15.6

Binary Heap at a high level

Sorted list of nodes = ordered binary tree of
nodes

* Maintain the heap property that every node
is less than or equal to its successors, and

 The shape property that the tree is full except
for the rightmost positions on the last level.

Operations:
* Peek: Return value of root node

e Remove: Remove root node and fix tree to
reestablish properties.

* Add: Insert at first open position, fix to
reestablish properties.

By Vikingstad at English Wikipedia - Transferred from
en.wikipedia to Commons by LeaW., Public Domain,
https://commons.wikimedia.org/w/index.php?curid=3504273

Binary Trees

Why another data structure?
Trees!

* Arraylist: Fast, not very dynamic
* O(1) get but O(N) add/remove (except at end)

* LinkedList: Dynamic, not very fast
* O(N) get, O(1) add/remove (once you get there)

* Binary Search Tree: Fast AND dynamic
* O(log(N)) search AND O(log(N)) add/remove.
 ASSUMING the tree is ~“balanced

Comparing TreeSet/Map with
HashSet/Map

TreeSet/Map HashSet/Map
* O(log(N)) add, contains, < O(1) add, contains, put,
put, get not amortized. get, amortized.

e Stored in sorted order Unordered data

» Can get range of values ~ Structures

in sorted order e Cannot get range
efficiently efficiently, stored
unordered

Binary Tree Nodes

Nodes for trees

public class TreeNode { lﬁeiwsﬁﬂbwfmgﬁfe
as Z pointers instead o
TreeNode left;

TreeNode right;
String info;
TreeNode(String s,
TreeNode 1link, TreeNode rlink){

info = s;
left = 1llink; @
right = rlink;
) (gooatss (o)

} T

10/24/22 Compsci 201, Fall 2022, Binary Search Trees 18

Nodes in the wild with Java 8

http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/8ed8e2b4b90e/src/share/classes/java/util/TreeMap.java

* In TreeMap the root has this type

* maintains left, right, and parent pointers
* Similar to: info and next, or info, left, right

static final class Entry<K,V> implements Map.Entry<K,V> {
K key;
V value;
Entry<K,V> left = null;
Entry<K,V> right = null;
Entry<K,V> parent;

10/24/22 Compsci 201, Fall 2022, Binary Search Trees 19

http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/8ed8e2b4b90e/src/share/classes/java/util/TreeMap.java

Tree terminology

Root: "top node", has no parent, node you pass for the
whole tree

* "macaque". Subtrees also have a root: chimp, ...

Leaf: “bottom” nodes, have no children / both null

e "baboon", "lemur”, "organutan”

Path: sequence of parent-child nodes
o "macaque", "Chimp", "lemur”
«<I»

Subtree: nodes at and beneath

. orangutan
* “chimp”, “baboon”, “lemur”

More Tree terminology

The depth of a node is the number of edges from the
root to the node.

The height of a tree is the

maximum depth of any
node.

Height is
max(0,1,2) =2

10/24/22 Compsci 201, Fall 2022, Binary Search Trees 21

Binary Search Tree Invariant

ZN

all all

values values
<7 >7

A binary tree is a binary search
tree if for every node:

e Left subtree values are all less than the
node’s value

AND

* Right subtree values are all greater than
the node’s value

According to some ordering
(comparable or comparator)

Enables efficient search, similar to binary search!

WOTO
Go to duke.is/8hjzt

Not graded for correctness,
just participation.

Try to answer without looking
back at slides and notes.

But do talk to your neighbors!

https://duke.is/8hjzt

Efficient Search in Binary Serach
Tree

e Code for search

* Insertion is very similar
* target.compareTo(...)

public boolean contains(TreeNode tree, String target) {

}f (tree == null) return false; - E S S
int result = target.compareTo(tree.info); oain]
if (result == 0) return true; saln-

if (result < 0) return contains(tree.left,target);
return contains(tree.right, target);

CgCc

10/24/22 Compsci 201, Fall 2022, Binary Search Trees 24

inOrder Traversal

* |llustrate with inOrder traversal and print
e Search tree values printed in order
e Could "visit" rather than print, every value

babeen, ehitip, IRMit, madagaesitonkey tantariniarangytamneutan

macaque

public void inOrder(TreeNode root) {

if (root !'= null) {
O] inOrder(root.left);]
system.out.println (?‘oot .info);]
@ [inOr‘der‘(r‘oot.r‘ight);]
}
}

10/24/22 Compsci 201, Fall 2022, Binary Search Trees

Helper method to return List

public ArrayList<String> visit(TreeNode root) {
ArrayList<String> 1list = new ArrayList<>();
doInOrder(root,list);
return list;

}

private void doInOrder(TreeNode root, ArrayList<String> 1list) {
if (root!= null) A

@ doInOrder(root.left,list);
list.add(root.info);
@ doInOrder(root.right,list);
}
}

* In order traversal = list?
* Create list, call helper, return list

e values in returned list in order

10/24/22 Compsci 201, Fall 2022, Binary Search Trees

29

Three ways to recursively traverse

a tree

* Difference is in where the non-recursive part is

inorder

preorder

psotorder

void inOrder(TreeNode t) {
if (¢t !'= null) {
inOrder(t.left);
System.out.println(t.info);
inOrder(t.right);
}
}

void preOrder(TreeNode t) {
if (t != null) {
System.out.println(t.info);
preOrder(t.left);
preOrder(t.right);

void postOrder(TreeNode t) {
if (¢t != null) {
postOrder(t.left);
postOrder(t.right);
System.out.println(t.info);
}
}

10/24/22

Compsci 201, Fall 2022, Binary Search Trees

30

oreOrder Traversal

preorder
void preOrder(TreeNode t) {
if (¢t != null) {
° macaque System.out.println(t.info);
] preOrder(t.left);
o Ch|mp preOrder(t.right);
}
* baboon ’
* lemur
* monkey

 tamarin 1

* orangutan

tamarin
/
orangutan

10/24/22 Compsci 201, Fall 2022, Binary Search Trees 32

postOrder Traversal

psotorder
void postOrder(TreeNode t) {
if (¢t !'= null) {
¢ ba bOO N postOrder(t.left);
postOrder(t.right);
P Iemu r) System.out.println(t.info);
. }
* chimp

* orangutan

e tamarin

* monkey 1

* Mmacaque baboon

/

10/24/22 Compsci 201, Fall 2022, Binary Search Trees 33

TreeCount APT

public class TreeCount {
PrOblem Statement public int count(TreeNode tree) {
// replace with working code
Write a method that returns the number of nodes of a binary tree. The) R O
TreeNode class will be accessible when your method is tested. }

is characterized by the pre-order string 8, 4, x, 6, x, x, 12, 10, x, x, 15, x, x

10/24/22 Compsci 201, Fall 2022, Binary Search Trees 34

Solving TreeCount in Picture &

Code

6=1+(2+3) public int count(TreeNode tree)
IY if (tree == null) A
return 0;

}.

o=l k(l+ 1) return 1 + count(tree.left)

10/24/22 Compsci 201, Fall 2022, Binary Search Trees

{

+ count(tree.right);

35

FAQ: Can | make a tree?

public class TreeNode {
int info;
TreeNode left;

TreeNode right;
TreeNode(int x){ Just call the TreeNode

info = x; constructor for each new
} node and connect them.

TreeNode(int x, TreeNode 1Node, TreeNode rNode){

info = x;
left = 1Node;
right = rNode;

TreeNode root =
root.left = new TreeNode(x: 3);
root.right = new TreeNode(x: 6);
root.left.left = new TreeNode(x: 2);
root.left.right = new TreeNode(x: 4);

new TreeNode(x: 5);

10/24/22

More terse version

TreeNode myTree = new TreeNode(x: 5,
new TreeNode(x: 3,
new TreeNode(x: 2),
new TreeNode(x: 4)),
new TreeNode(x: 6));

Compsci 201, Fall 2022, Binary Search Trees 36

Tree Recursion tips / common
mistakes

Draw it out! Trace your code on small examples.

Return type of the method. Do you need a helper
method?

Base case first, otherwise infinite recursion / null
pointer exception.

If you make a recursive call, make sure to use
what it returns.

Complexity of tree traversal

* Intuition: visit every node once and print it
* If there are N nodes, should be O(N)
e But what about recursive calls?

* More generally/formally:
* We create a recurrence relation (an equation)
* Solving the equation yields runtime

Developing runtime recurrence
relation

e T(n) time inOrder (root) with n nodes
* T(n) =T(n/2) + O(1) + T(n/2) = O(n)

public void inOrder(TreeNode root) {
if (root != null) A
@ inOrder(root.left);
System.out.println(root.info);
@ inOrder(root.right);
}
 Why T(n/2)? '

Assumes the tree is balanced: About the same
number of nodes in the left subtree as the right.

10/24/22 Compsci 201, Fall 2022, Binary Search Trees 39

If Tree is not balanced?

* If every node has a right child but no left...
* T(n) =T(0) + O(1) + T(n-1) = O(n)

* |f not
Balanced

public void inOrder(TreeNode root) f{
e But search? if (root != null) {
. 5 @ inOrder(root.left);

Insert: System.out.println(root.info);
@ inOrder(root.right);
}
+

10/24/22 Compsci 201, Fall 2022, Binary Search Trees 40

Why would a tree not be
balanced?

Worse case:

e What if we insert sorted data?

For(int i1=0; i<n; i++) {
myTree.insert(i);

* Average case height O(log(n)) for random-ish order

* AVL trees, red-black trees (optional Zybook chapter) can
dynamically ensure good balance.

10/24/22 Compsci 201, Fall 2022, Binary Search Trees 41

