CompSci 201, L22:
Graphs, DFS

Person in CS: Katherine Johnson

11/14/22

Katherine Johnson
NASA Mathematician, Presidential

Medal of Freedom, subject of
Hidden Figures, Katherine G.

Johnson Computational Research

Facilityy, NCWIT Pioneer in Tech.
Rnown for: calculating the trajectory
of early space launches.

Compsci 201, Fall 2022, L22: Graphs, DFS

Logistics, Coming up
e P5 Huffman due today, Monday 11/14

* APT10 (greedy) due Wed., 11/16

* APT Quiz 2:
* Release: This Thursday 11/17
* Complete by: Monday 11/21
* Quiz, not a hw, no late period

What is a graph?

A graph is a data structure for representing connections among items, and consists of vertices connected by edges.

e Avertex (or node) represents an item in a graph.
¢ An edge represents a connection between two vertices in a graph.

A graph is like a tree but
more general because
there can be cycles.

Vertex (node)

NORTH BEACH

via Turk St and Arguelio 8ivd
Some traffic, as usual

Maps/directions software:
* \Vertices ~= intersections

* Edges ~=roads
Zybook chapter 23

11/14/22 Compsci 201, Fall 2022, L22: Graphs, DFS

Undirected versus directed graphs

Undirected Graph Directed Graph
Edges go both ways Edges go one way only

o 1 2 3 45 ‘ 2xspeed
/V‘ link

link
link
\ link
link link link

. n
" li k/ link /
g

Facebook network, most road Worldwide web is a directed

networks, are undirected graph of webpages (nodes)
and links (directed edges)

Zybook chapter 23

11/14/22 Compsci 201, Fall 2022, L22: Graphs, DFS

Simple Graphs and Graph Sizes

* In a simple graph, there is at most one (undirected)
edge between nodes (or 2 directed).

e Usually parameterize the size of the graph as:
* N (or |V]) = number of vertices/nodes
* M (or |E|) = number of edges
* M <= N?for a simple graph
Zybook chapter 23

Paths in Graphs

* A path is a sequence of unique vertices where
subsequent nodes are connected by edges

* (Also commonly defined as a sequence of edges with
unique vertices)

 Example in bold blue: [A, B, F, G].
e (or [el, e4, e7])

11/14/22 Compsci 201, Fall 2022, L22: Graphs, DFS

Pathfinding or Graph Search

R.0.B.0.T. Comics

Is there a way to get from point A to
point B?

* Maps/directions

* Video games

Robot motion planning
* Etc.

"HIS PATH-PLANNING MAY BE
SUB-OPTIMAL, BUT IT'S GOT FLAIR."

© Civic Center, San Francisco, CA 94102

Presidio of San Francisco, San Francis«

11/14/22 Compsci 201, Fall 2022, L22: Graphs, DFS 8

Recursive Depth-first
search (DFS) in Grid
Graphs

Two-dimensional grid is simple
graph with implicit structure

0 1 2
A B C
o e | ¢ 4
G H I

Represent as 2d array, e.g., char[][]
Two nodes adjacent if indices +/- 1

If not all of these edges are
present, can represent a maze.

11/14/22 Compsci 201, Fall 2022, L22: Graphs, DFS 10

A maze is a grid graph

17 public class MazeDemo {

18 private int mySize; // dimension of maze

19 private boolean[][] north; // 1s there a wall to north of cell 1, j
20 private boolean[][] east; ‘o S ——

21 private boolean[][] south; File

22 private boolean[][] west;

 Example: ten by ten grid

* Edge = no wall, no edge
= wall.

* Look for a path from
start (lower left) to
middle. O

|

11/14/22 Compsci 201, Fall 2022, L22: Graphs, DFS 11

Depth First Search for Solving
Maze

coursework.cs.duke.edu/cs-201-fall-22/maze-demo
Always explore (recurse o

on) a new (unvisited) e

adjacent vertex if |eeeeoeee

possible. 0000000

R ICEXEXILIC

: : IR I

If impossible, backtrack o oleole e
to the most recent vertex @®eolee
adjacent to an unvisited oo |0

vertex and continue. ¢ ce0 6 00

0000 00 |0

® oo oo o

| S ; § —_— 4

11/14/22 Compsci 201, Fall 2022, L22: Graphs, DFS 12

https://coursework.cs.duke.edu/cs-201-fall-22/maze-demo

How is DFS Graph Traversal like
Recursive Tree Traversal?

blic void inOrder(TreeNode root) {
Tree traversals assumed PPE oot 1= D) £
. O) inOrder(‘t.left);
only two adjacent nodes Systen. out. println(root. info)
. @ inOrder(root.right);
(children) and no cycles p o R

I
* Just try recursing on every adjacent vertex?

* Unlike in a tree, there are cycles: How do we avoid
infinite recursion?

Base Cases and Visited Set

. .. Need to keep track to
23 private boolean[][] visited;

160 private int solveDFS(int x, int y, int depth) {

161 1f X=011y=0 1|l x ==mySize +1 || y == mySize +1) return 0;
162 1f (visited[x][y]) return 0;

163

164 visited[x][y] = true;

* Line 161: Base case: Searching off the grid
* Line 162: Base case: Already explored here

171 // reached middle which is goal of maze
172 1f (X == mySize /2 & y == mySize /2) {
173 return depth;

174 }

e Line 172: Base case: Found the middle!

11/14/22 Compsci 201, Fall 2022, L22: Graphs, DFS 14

Recursive case

y+1 = recurse
on node above

I'north[x][y] = no wall

above, can go that way. Tracking length

of path

176 if (tnorth[x]Ly]) {

177 int d = solveDFS(x, y + 1,depth+l);
178 if (d > @) return d;

179 } If you found the center,

return the path length

3 more symmetric cases for other 3 directions

11/14/22 Compsci 201, Fall 2022, L22: Graphs, DFS 15

Runtime complexity for Recursive
DFS maze/grid

e Suppose the grid has N = width x height nodes.

* Each node will be recursed on <=4 times:
* Has 4 neighbors that could recurse on it,

* Keep track of visited, we don’t recurse from the same
neighbor twice.

e Each recursive call is O(1).
e Overall runtime complexity is O(N).

WOTO
Go to duke.is/8vshqg

Not graded for correctness,
just participation.

Try to answer without looking
back at slides and notes.

But do talk to your neighbors!

https://duke.is/8vshq

'terative Depth-first
search (DFS) in General
Graphs

Stack Abstract Data Structure:

14 }

LIFO List

public static void sdemo() {

String[] strs = {"compsci", "is", "wonderful"};
Stack<String> st = new Stack<>();
for(String s : strs) {

hy

st.push(s);

while (! st.isEmpty()) {

hy

System.out.println(st.pop());

wonderful
is
compsci

11/14/22

Compsci 201, Fall 2022, L22: Graphs, DFS

LIFO = Last In
First Out

Push: Add

element to stack

Pop: Get last
element in

19

Did we really need recursion?
oreOrder Tree Traversal with Stack

public static void preOrder(TreeNode tree) A
Stack<TreeNode> myStack = new Stack<>();

myStack.add(tree); ° 4
while (!myStack.isEmpty()) {

TreeNode current = myStack.pop(); ° @ 6

if (current != null) { 12
System.out.println(current.info) o @ e
myStack.add(current.right); 10

15

myStack.add(current.left);

}
Recursion uses the call stack to keep track of nodes
Could also explicitly use a stack, can do the same for DFS

11/14/22 Compsci 201, Fall 2022, L22: Graphs, DFS 20

General data structures for
graphs: Not necessarily a grid

Adjacency List Adjacency Matrix
Vertices Adjacent vertices (edges) A B
A A
®—® s Aco O 0
c el & |
) @ o A 1
Zybook chapter 23

11/14/22 Compsci 201, Fall 2022, L22: Graphs, DFS

21

Efficient Adjacency “List” Using
Double Hashing

 HashMap<Vertex, HashSet<Vertex>> alist

* Vertex type can be Integer, char, String, custom object,
..., heeds to have good hashCode() and equals().

Vertices Adjacent vertices (edges)

A * alList.put(‘A’, new HashSet())
(A)—(B) 5 c b « alist.get(‘A’).add(‘B’)
 alList.get(‘A’).add(‘C’)
C B
© © D B

0(1) time to check if nodes are connected or get the
neighbors of a node (assuming good hashCode)

Graph Search Data Structures

* Have an adjacency list for the graph
* Keep track of visited nodes in a set

» Keep track of the previous node: During search, how
did | get to this node?

9 public class DFS {

10 public static Map<Character, Set<Character>> alist;
11 public static Set<Character> visited;
12 public static Map<Character, Character> previous;

* Example has Character nodes, could be any label for
the nodes.

 Storing as instance variables, accessible in methods.

11/14/22 Compsci 201, Fall 2022, L22: Graphs, DFS

23

Initializing Iterative DFS

» Stack stores nodes we have visited/discovered, but
not explored from yet.

* Explore from one current node at a time.

14 public static void dfs(char start) {

15 Stack<Character> toExplore = new Stack<>();
16 char current = start;

17 toExplore.add(current);

18 visited.add(current);

e Stack is LIFO (last-in first-out), so we always explore
from the last node we discovered, depth-first!

11/14/22 Compsci 201, Fall 2022, L22: Graphs, DFS 24

21
22
23
24
25
26
27
28
29

11/14/22

while (!toExplore.isEmpty()) {

[terative DFS Loop

While there are nodes we
have not explored from...

current = toExplore.pop();

Explore from the most
recently discovered node...

Look at all neighbors
of current node...

for (char neighbor : alist.get(current)) {

1f (lvisited.contains(neighbor)) { If we haven’t seen
previous.put(neighbor, current); them before...

visited.add(neighbor);
toExplore.push(neighbor);

Compsci 201, Fall 2022, L22: Graphs, DFS

Then:
1. note how we got here

2. Note we have seen
3. Mark to explore later

25

Initialize search at A

start: A Adjacency List:
A=[B, D]
B=[A, Ea F]
C=[F]
D=[A, E]
E=[B, Da F]
F=[B, Ca E]

toExplore (stack) previous (map) Visited (set)

A {A}

11/14/22 Compsci 201, Fall 2022, L22: Graphs, DFS

26

Pop A off the stack

start: A Adjacency List:
A=[B, D]

B=[A, E: F]
C=[F]

D=[A, E]

E=[B, D: F]
F=[B, C: E]

toExplore (stack) previous (map) Visited (set)

1A}

11/14/22 Compsci 201, Fall 2022, L22: Graphs, DFS

27

Find B from A

start: A Adjacency List:
A=[B, D]

B=[A, Ea F]
C=[F]

D=[A, E]

E=[B, Da F]
F=[B, Ca E]

toExplore (stack) previous (map) Visited (set)

B B <- A A, B}

11/14/22 Compsci 201, Fall 2022, L22: Graphs, DFS

28

start: A

toExplore (stack)

D
B

11/14/22

Find D from A

Adjacency List:

A=[B,
B=[A,
C=[F]
D=[A,
E=[B,
F=[B,

previous (map) Visited (set)

B <- A {A, B, D}
D <- A

Compsci 201, Fall 2022, L22: Graphs, DFS

D]

F]

F]
E]

29

Pop D off the stack

start: A Adjacency List:
A=[B, D]

B=[A, Ea F]
C=[F]

D=[A, E]

E=[B, Da F]
F=[B, Ca E]

toExplore (stack) previous (map) Visited (set)

B B <- A {A, B, D}
D <- A

11/14/22 Compsci 201, Fall 2022, L22: Graphs, DFS

30

start: A

toExplore (stack)

E
B

11/14/22

Find E from D

Adjacency List:
A=[B, D]

B=[A, E, F]
C=[F]

D=[A, E]

E=[B, Da F]
F=[B, Ca E]

previous (map) Visited (set)

- A {A: B; D: E}
- A
- D

m O
A A A

Compsci 201, Fall 2022, L22: Graphs, DFS

31

Pop E off the stack

start: A

toExplore (stack)

B

11/14/22

Adjacency List:
A=[B, D]

B=[A, E, F]
C=[F]

D=[A, E]

E=[B, Da F]
F=[B, Ca E:l

previous (map) Visited (set)

- A {A, B, D, E}
- A

- D

O
A A A

Compsci 201, Fall 2022, L22: Graphs, DFS

32

start: A

toExplore (stack)

F
B

11/14/22

Find F from E

Adjacency List:
A=[B, D]

B=[A, E, F]
C=[F]

D=[A, E]

E=[B, Da F]
F=[B, Ca E:l

previous (map) Visited (set)

<- A {A, B, D, E, F}
<- A
<- D
<- E

Compsci 201, Fall 2022, L22: Graphs, DFS

i m O o

33

Pop F off the stack

start: A

toExplore (stack)

B

11/14/22

Adjacency List:
A=[B, D]

B=[A, E, F]
C=[F]

D=[A, E]

E=[B, Da F]
F=[B, Ca E:l

previous (map) Visited (set)

<- A {A, B, D, E, F}
<- A
<- D
<- E

Compsci 201, Fall 2022, L22: Graphs, DFS

i m O o

34

start: A

toExplore (stack)

C
B

11/14/22

Find C from F

Adjacency List:

A=[B, D]
B=[A, E, F]
C=[F]

D=[A, E]
E=[B, Da F]
F=[B, Ca E:l

previous (map) Visited (set)
<- A
<- A
<- D
<- E
<- F

Compsci 201, Fall 2022, L22: Graphs, DFS

iA, B, D, E, F, C}

O MmO oo

35

Pop C off the stack

start: A Adjacency List:

A=[B, D]
B=[A, Ea F]
C=[F]

D=[A, E]
E=[B, Da F]
F=[B, Ca E]

toExplore (stack) previous (map) Visited (set)
B <- A {A, B, D, E, F, (}
<- A
<- D
<- E
<- F

11/14/22 Compsci 201, Fall 2022, L22: Graphs, DFS

O MmO oo

36

Pop B off the stack

start: A Adjacency List:

A=[B, D]
B=[A, E: F]
C=[F]

D=[A, E]
E=[B, D: F]
F=[B, C: E]

toExplore (stack) previous (map) Visited (set)

<- A {A, B, D, E, F, C}
<- A
<- D
<- E
<- F

11/14/22 Compsci 201, Fall 2022, L22: Graphs, DFS

O MmO oo

37

DFS Search Tree

start: A Adjacency List:
A=[B, D]
B=[A, Ea F]
C=[F]
D=[A, E]
E=[B, Da F]
F=[B, Ca E]

toExplore (stack) previous (map) Visited (set)

<- A {A, B, D, E, F, C}
<- A

<= D Path from A to C:
<- E C<-F<-E<-D<-A
<- F

11/14/22 Compsci 201, Fall 2022, L22: Graphs, DFS

Can find paths from A
to X by following

previous backwards
from X

O MmO oo

38

