
CompSci 201, L22:
Graphs, DFS

11/14/22 Compsci 201, Fall 2022, L22: Graphs, DFS 1

Person in CS: Katherine Johnson

11/14/22 Compsci 201, Fall 2022, L22: Graphs, DFS 2

Logistics, Coming up

11/14/22 Compsci 201, Fall 2022, L22: Graphs, DFS 3

• P5 Huffman due today, Monday 11/14

• APT10 (greedy) due Wed., 11/16

• APT Quiz 2:
• Release: This Thursday 11/17
• Complete by: Monday 11/21
• Quiz, not a hw, no late period

What is a graph?

11/14/22 Compsci 201, Fall 2022, L22: Graphs, DFS 4

Maps/directions software:
• Vertices ~= intersections
• Edges ~= roads

Vertex (node)

edge

A graph is like a tree but
more general because
there can be cycles.

Zybook chapter 23

Undirected versus directed graphs

Undirected Graph
Edges go both ways

Facebook network, most road
networks, are undirected

Directed Graph
Edges go one way only

Worldwide web is a directed
graph of webpages (nodes)
and links (directed edges)

11/14/22 Compsci 201, Fall 2022, L22: Graphs, DFS 5

Zybook chapter 23

Simple Graphs and Graph Sizes

• In a simple graph, there is at most one (undirected)
edge between nodes (or 2 directed).

• Usually parameterize the size of the graph as:
• N (or |V|) = number of vertices/nodes
• M (or |E|) = number of edges
• M <= N2 for a simple graph

11/14/22 Compsci 201, Fall 2022, L22: Graphs, DFS 6

Zybook chapter 23

Paths in Graphs

• A path is a sequence of unique vertices where
subsequent nodes are connected by edges
• (Also commonly defined as a sequence of edges with

unique vertices)

• Example in bold blue: [A, B, F, G].
• (or [e1, e4, e7])

11/14/22 Compsci 201, Fall 2022, L22: Graphs, DFS 7

Pathfinding or Graph Search
Is there a way to get from point A to
point B?
• Maps/directions
• Video games
• Robot motion planning
• Etc.

11/14/22 Compsci 201, Fall 2022, L22: Graphs, DFS 8

Recursive Depth-first
search (DFS) in Grid
Graphs

11/14/22 Compsci 201, Fall 2022, L22: Graphs, DFS 9

Two-dimensional grid is simple
graph with implicit structure

11/14/22 Compsci 201, Fall 2022, L22: Graphs, DFS 10

A B C

D E F

G H I

A B

D

C

E F

G H I

0

1

2

0 1 2

Represent as 2d array, e.g., char[][]
Two nodes adjacent if indices +/- 1 If not all of these edges are

present, can represent a maze.

A maze is a grid graph

• Example: ten by ten grid
• Edge = no wall, no edge

= wall.
• Look for a path from

start (lower left) to
middle.

11/14/22 Compsci 201, Fall 2022, L22: Graphs, DFS 11

Depth First Search for Solving
Maze

11/14/22 Compsci 201, Fall 2022, L22: Graphs, DFS 12

Always explore (recurse
on) a new (unvisited)
adjacent vertex if
possible.

If impossible, backtrack
to the most recent vertex
adjacent to an unvisited
vertex and continue.

coursework.cs.duke.edu/cs-201-fall-22/maze-demo

https://coursework.cs.duke.edu/cs-201-fall-22/maze-demo

How is DFS Graph Traversal like
Recursive Tree Traversal?

Tree traversals assumed
only two adjacent nodes
(children) and no cycles

11/14/22 Compsci 201, Fall 2022, L22: Graphs, DFS 13

• Just try recursing on every adjacent vertex?
• Unlike in a tree, there are cycles: How do we avoid

infinite recursion?

Base Cases and Visited Set

11/14/22 Compsci 201, Fall 2022, L22: Graphs, DFS 14

• Line 161: Base case: Searching off the grid
• Line 162: Base case: Already explored here

• Line 172: Base case: Found the middle!

Need to keep track to
avoid infinite recursion

Recursive case

11/14/22 Compsci 201, Fall 2022, L22: Graphs, DFS 15

3 more symmetric cases for other 3 directions

!north[x][y]à no wall
above, can go that way.

y+1à recurse
on node above Tracking length

of path

If you found the center,
return the path length

Runtime complexity for Recursive
DFS maze/grid

• Suppose the grid has N = width x height nodes.

• Each node will be recursed on <= 4 times:
• Has 4 neighbors that could recurse on it,
• Keep track of visited, we don’t recurse from the same

neighbor twice.

• Each recursive call is O(1).
• Overall runtime complexity is O(N).

11/14/22 Compsci 201, Fall 2022, L22: Graphs, DFS 16

WOTO
Go to duke.is/8vshq

11/14/22 Compsci 201, Fall 2022, L22: Graphs, DFS 17

Not graded for correctness,
just participation.

Try to answer without looking
back at slides and notes.

But do talk to your neighbors!

https://duke.is/8vshq

Iterative Depth-first
search (DFS) in General
Graphs

11/14/22 Compsci 201, Fall 2022, L22: Graphs, DFS 18

Stack Abstract Data Structure:
LIFO List

11/14/22 Compsci 201, Fall 2022, L22: Graphs, DFS 19

LIFO = Last In
First Out

Push: Add
element to stack

Pop: Get last
element in

wonderful
is
compsci

Did we really need recursion?
preOrder Tree Traversal with Stack

11/14/22 Compsci 201, Fall 2022, L22: Graphs, DFS 20

Recursion uses the call stack to keep track of nodes
Could also explicitly use a stack, can do the same for DFS

General data structures for
graphs: Not necessarily a grid

11/14/22 Compsci 201, Fall 2022, L22: Graphs, DFS 21

Adjacency List Adjacency Matrix

Zybook chapter 23

Efficient Adjacency “List” Using
Double Hashing

11/14/22 Compsci 201, Fall 2022, L22: Graphs, DFS 22

• HashMap<Vertex, HashSet<Vertex>> aList
• Vertex type can be Integer, char, String, custom object,

…, needs to have good hashCode() and equals().

• aList.put(‘A’, new HashSet())

• aList.get(‘A’).add(‘B’)

• aList.get(‘A’).add(‘C’)

• …

O(1) time to check if nodes are connected or get the
neighbors of a node (assuming good hashCode)

Graph Search Data Structures

• Have an adjacency list for the graph
• Keep track of visited nodes in a set
• Keep track of the previous node: During search, how

did I get to this node?

• Example has Character nodes, could be any label for
the nodes.
• Storing as instance variables, accessible in methods.

11/14/22 Compsci 201, Fall 2022, L22: Graphs, DFS 23

Initializing Iterative DFS

• Stack stores nodes we have visited/discovered, but
not explored from yet.
• Explore from one current node at a time.

• Stack is LIFO (last-in first-out), so we always explore
from the last node we discovered, depth-first!

11/14/22 Compsci 201, Fall 2022, L22: Graphs, DFS 24

Iterative DFS Loop

11/14/22 Compsci 201, Fall 2022, L22: Graphs, DFS 25

While there are nodes we
have not explored from… Explore from the most

recently discovered node…

Look at all neighbors
of current node…

If we haven’t seen
them before…

Then:
1. note how we got here
2. Note we have seen
3. Mark to explore later

Initialize search at A

11/14/22 Compsci 201, Fall 2022, L22: Graphs, DFS 26

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

start: A

toExplore (stack)

A

previous (map) Visited (set)

{A}

Pop A off the stack

11/14/22 Compsci 201, Fall 2022, L22: Graphs, DFS 27

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

start: A

toExplore (stack) previous (map) Visited (set)

{A}

Find B from A

11/14/22 Compsci 201, Fall 2022, L22: Graphs, DFS 28

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

start: A

toExplore (stack)

B

previous (map)

B <- A

Visited (set)

{A, B}

Find D from A

11/14/22 Compsci 201, Fall 2022, L22: Graphs, DFS 29

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

start: A

toExplore (stack)

D
B

previous (map)

B <- A
D <- A

Visited (set)

{A, B, D}

Pop D off the stack

11/14/22 Compsci 201, Fall 2022, L22: Graphs, DFS 30

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

start: A

toExplore (stack)

B

previous (map)

B <- A
D <- A

Visited (set)

{A, B, D}

Find E from D

11/14/22 Compsci 201, Fall 2022, L22: Graphs, DFS 31

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

start: A

toExplore (stack)

E
B

previous (map)

B <- A
D <- A
E <- D

Visited (set)

{A, B, D, E}

Pop E off the stack

11/14/22 Compsci 201, Fall 2022, L22: Graphs, DFS 32

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

start: A

toExplore (stack)

B

previous (map)

B <- A
D <- A
E <- D

Visited (set)

{A, B, D, E}

Find F from E

11/14/22 Compsci 201, Fall 2022, L22: Graphs, DFS 33

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

start: A

toExplore (stack)

F
B

previous (map)

B <- A
D <- A
E <- D
F <- E

Visited (set)

{A, B, D, E, F}

Pop F off the stack

11/14/22 Compsci 201, Fall 2022, L22: Graphs, DFS 34

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

start: A

toExplore (stack)

B

previous (map)

B <- A
D <- A
E <- D
F <- E

Visited (set)

{A, B, D, E, F}

Find C from F

11/14/22 Compsci 201, Fall 2022, L22: Graphs, DFS 35

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

start: A

toExplore (stack)

C
B

previous (map)

B <- A
D <- A
E <- D
F <- E
C <- F

Visited (set)

{A, B, D, E, F, C}

Pop C off the stack

11/14/22 Compsci 201, Fall 2022, L22: Graphs, DFS 36

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

start: A

toExplore (stack)

B

previous (map)

B <- A
D <- A
E <- D
F <- E
C <- F

Visited (set)

{A, B, D, E, F, C}

Pop B off the stack

11/14/22 Compsci 201, Fall 2022, L22: Graphs, DFS 37

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

start: A

toExplore (stack) previous (map)

B <- A
D <- A
E <- D
F <- E
C <- F

Visited (set)

{A, B, D, E, F, C}

DFS Search Tree

11/14/22 Compsci 201, Fall 2022, L22: Graphs, DFS 38

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

start: A

toExplore (stack) previous (map)

B <- A
D <- A
E <- D
F <- E
C <- F

Visited (set)

{A, B, D, E, F, C}Can find paths from A
to X by following

previous backwards
from X

Path from A to C:
C <- F <- E <- D <- A

