CompSci 201, L23:
[terative DFS BFS

Logistics, Coming up
* APT10 (greedy) due today, Wed., 11/16

* APT Quiz 2: 2 hours, 3 problems

e covers APT6-10, linked list and tree problems
guaranteed

* Release: This Thursday 11/17
* Complete by: Monday 11/21
* Quiz, not a hw, no late period

* Project 6: Route releasing this week, due Monday
12/5

General data structures for
graphs: Not necessarily a grid

Adjacency List Adjacency Matrix
Vertices Adjacent vertices (edges) A B
A A
®—® s Aco O 0
c el & |
) @ o A 1
Zybook chapter 23

11/16/22 Compsci 201, Fall 2022, L23: Iterative DFS BFS

Efficient Adjacency “List” Using
Double Hashing

 HashMap<Vertex, HashSet<Vertex>> alist

* Vertex type can be Integer, char, String, custom object,
..., heeds to have good hashCode() and equals().

Vertices Adjacent vertices (edges)

A * alList.put(‘A’, new HashSet())
(A)—(B) 5 c b « alist.get(‘A’).add(‘B’)
 alList.get(‘A’).add(‘C’)
C B
© © D B

0(1) time to check if nodes are connected or get the
neighbors of a node (assuming good hashCode)

Graph Search Data Structures

* Have an adjacency list for the graph
* Keep track of visited nodes in a set

» Keep track of the previous node: During search, how
did | get to this node?

9 public class DFS {

10 public static Map<Character, Set<Character>> alist;
11 public static Set<Character> visited;
12 public static Map<Character, Character> previous;

* Example has Character nodes, could be any label for
the nodes.

 Storing as instance variables, accessible in methods.

11/16/22 Compsci 201, Fall 2022, L23: Iterative DFS BFS

lterative Depth-First
Search (DFS)

Initializing Iterative DFS

» Stack stores nodes we have visited/discovered, but
not explored from yet.

* Explore from one current node at a time.

14 public static void dfs(char start) {

15 Stack<Character> toExplore = new Stack<>();
16 char current = start;

17 toExplore.add(current);

18 visited.add(current);

e Stack is LIFO (last-in first-out), so we always explore
from the last node we discovered, depth-first!

11/16/22 Compsci 201, Fall 2022, L23: Iterative DFS BFS

21
22
23
24
25
26
27
28
29

11/16/22

while (!toExplore.isEmpty()) {

[terative DFS Loop

While there are nodes we
have not explored from...

current = toExplore.pop();

Explore from the most
recently discovered node...

Look at all neighbors
of current node...

for (char neighbor : alist.get(current)) {

1f (lvisited.contains(neighbor)) { If we haven’t seen
previous.put(neighbor, current); them before...

visited.add(neighbor);
toExplore.push(neighbor);

Compsci 201, Fall 2022, L23: Iterative DFS BFS

Then:
1. note how we got here

2. Note we have seen
3. Mark to explore later

Initialize search at A

start: A Adjacency List:
A=[B, D]
B=[A, Ea F]
C=[F]
D=[A, E]
E=[B, Da F]
F=[B, Ca E]

toExplore (stack) previous (map) Visited (set)

A {A}

11/16/22 Compsci 201, Fall 2022, L23: Iterative DFS BFS

Pop A off the stack

start: A Adjacency List:
A=[B, D]

B=[A, E: F]
C=[F]

D=[A, E]

E=[B, D: F]
F=[B, C: E]

toExplore (stack) previous (map) Visited (set)

1A}

11/16/22 Compsci 201, Fall 2022, L23: Iterative DFS BFS

10

Find B from A

start: A Adjacency List:
A=[B, D]
B=[A, Ea F]
C=[F]
D=[A, E]
E=[B, Da F]
F=[B, Ca E]

toExplore (stack) previous (map) Visited (set)

B B <- A A, B}

11/16/22 Compsci 201, Fall 2022, L23: Iterative DFS BFS

11

start: A

toExplore (stack)

D
B

11/16/22

Find D from A

Adjacency List:

A=[B,
B=[A,
C=[F]
D=[A,
E=[B,
F=[B,

previous (map) Visited (set)

B <- A {A, B, D}
D <- A

Compsci 201, Fall 2022, L23: Iterative DFS BFS

D]

F]

F]
E]

12

Pop D off the stack

start: A Adjacency List:
A=[B, D]

B=[A, Ea F]
C=[F]

D=[A, E]

E=[B, Da F]
F=[B, Ca E]

toExplore (stack) previous (map) Visited (set)

B B <- A {A, B, D}
D <- A

11/16/22 Compsci 201, Fall 2022, L23: Iterative DFS BFS

13

start: A

toExplore (stack)

E
B

11/16/22

Find E from D

Adjacency List:
A=[B, D]

B=[A, E, F]
C=[F]

D=[A, E]

E=[B, Da F]
F=[B, Ca E:l

previous (map) Visited (set)

B <- A {A, B, D, E}
D <- A
E <- D

Compsci 201, Fall 2022, L23: Iterative DFS BFS

14

Pop E off the stack

start: A

toExplore (stack)

B

11/16/22

Adjacency List:
A=[B, D]

B=[A, E, F]
C=[F]

D=[A, E]

E=[B, Da F]
F=[B, Ca E:l

previous (map) Visited (set)

- A {A, B, D, E}
- A

- D

m O
A A A

Compsci 201, Fall 2022, L23: Iterative DFS BFS

15

start: A

toExplore (stack)

F
B

11/16/22

Find F from E

Adjacency List:
A=[B, D]

B=[A, E, F]
C=[F]

D=[A, E]

E=[B, Da F]
F=[B, Ca E:l

previous (map) Visited (set)

<- A {A, B, D, E, F}
<- A
<- D
<- E

Compsci 201, Fall 2022, L23: Iterative DFS BFS

i m O o

16

Pop F off the stack

start: A

toExplore (stack)

B

11/16/22

Adjacency List:
A=[B, D]

B=[A, E, F]
C=[F]

D=[A, E]

E=[B, Da F]
F=[B, Ca E:l

previous (map) Visited (set)

<- A {A, B, D, E, F}
<- A
<- D
<- E

Compsci 201, Fall 2022, L23: Iterative DFS BFS

i m O o

17

start: A

toExplore (stack)

C
B

11/16/22

Find C from F

Adjacency List:

A=[B, D]
B=[A, E, F]
C=[F]

D=[A, E]
E=[B, Da F]
F=[B, Ca E:l

previous (map) Visited (set)
<- A
<- A
<- D
<- E
<- F

Compsci 201, Fall 2022, L23: Iterative DFS BFS

iA, B, D, E, F, C}

O MmO oo

18

Pop C off the stack

start: A Adjacency List:

A=[B, D]
B=[A, Ea F]
C=[F]

D=[A, E]
E=[B, Da F]
F=[B, Ca E]

toExplore (stack) previous (map) Visited (set)
B <- A {A, B, D, E, F, (}
<- A
<- D
<- E
<- F

11/16/22 Compsci 201, Fall 2022, L23: Iterative DFS BFS

O MmO oo

19

Pop B off the stack

start: A Adjacency List:

A=[B, D]
B=[A, E: F]
C=[F]

D=[A, E]
E=[B, D: F]
F=[B, C: E]

toExplore (stack) previous (map) Visited (set)

<- A {A, B, D, E, F, C}
<- A
<- D
<- E
<- F

11/16/22 Compsci 201, Fall 2022, L23: Iterative DFS BFS

O MmO oo

20

DFS Search Tree

start: A Adjacency List:
A=[B, D]
B=[A, Ea F]
C=[F]
D=[A, E]
E=[B, Da F]
F=[B, Ca E]

toExplore (stack) previous (map) Visited (set)

<- A {A, B, D, E, F, C}
<- A

<= D Path from A to C:
<- E C<-F<-E<-D<-A
<- F

11/16/22 Compsci 201, Fall 2022, L23: Iterative DFS BFS

Can find paths from A
to X by following

previous backwards
from X

O MmO oo

21

WOTO
Go to duke.is/m467a

Not graded for correctness,
just participation.

Try to answer without looking
back at slides and notes.

https://duke.is/m467a

DFS Complexity?

While loop over all
nodes (N), potentially?

20 while (!'toExplore.isEmpty()) {

Loop over edges (M)

21 current = toExplore.pop();

22 for (char neighbor : alList.get(current)) {

23 if (lvisited.contains(neighbor)) {

24 previous.put(neighbor, current);

25 visited.add(neighbor);

26 toExplore.push(neighbor);

27 3

28 } Seems like O(NM),
29 } but...

11/16/22 Compsci 201, Fall 2022, L23: Iterative DFS BFS 23

DFS Complexity?

20 while (!toExplore.isEmpty()) { Loop over edges adjacent
21 current = toExplore.pop(); to current node

22 for (char neighbor : alList.get(current)) {

23 if (!visited.contains(neighbor)) {

24 previous.put(neighbor, current);

25 visited.add(neighbor);

26 toExplore.push(neighbor);

27 }

28 3 Pop each of N nodes at most once.

29 } Loop over neighbors of each node exactly once,

considers each edge twice.
N+2M is O(N+M).

11/16/22 Compsci 201, Fall 2022, L23: Iterative DFS BFS 24

lterative Breadth-First
Search (BFS)

Queue: A FIFO List

e Both add and remove are O(1)

* Add at end of LinkedList ineadlist i
N tim ment
* Remove from front of LinkedList tlheeQulesule i:t:rfaece_s

public static void gdemo() {
String[] strs = {"compsci", "is*#*"wonderful"}; compsci
Queue<String> g = new LinkedList<>(); .

for(String s : strs) { 'S
q.add(s) ; wonderful

}
while (! q.isEmpty()) {
System.out.println(qg.remove());

}

11/16/22 Compsci 201, Fall 2022, L23: Iterative DFS BFS 26

levelOrder Tree Traversal with a
gueue

public static void levelOrder(TreeNode tree) {
Queue<TreeNode> queue = new LinkedList<>();
queue.add(tree);

while (!queuve.isEmpty()) { o 4

TreeNode current = queue.remove();

if (current !'= null) { ° e 12

System.out.println(current.info); 6

queue.add(current.left); o e e
10

queue.add(current.right);

Use a queue to keep track of nodes
First in first out, nodes visited in level order

11/16/22 Compsci 201, Fall 2022, L23: Iterative DFS BFS 27

Depth First Search for Solving
Maze

coursework.cs.duke.edu/cs-201-fall-22/maze-demo
Always explore (recurse o VTS DO RRDFS

on) a new (unvisited) h

adjacent vertex if |
possible.
If impossible, backtrack ¢ o
oo o0
to the most recent vertex — ® o
adjacent to an unvisited o
vertex and continue. o0 000
oo 00 (0o |o
@eoo XX

11/16/22 Compsci 201, Fall 2022, L23: Iterative DFS BFS 28

https://coursework.cs.duke.edu/cs-201-fall-22/maze-demo

Breadth First Search for Solving
Maze

coursework.cs.duke.edu/cs-201-fall-22/maze-demo

Explore all your neighbors File
(adjacent vertices) before

you visit any of your |
neighbors’ neighbors. ‘

Looking for the shortest
path/solution.

] DFS never
looked
oo ®
herel
®@eoo

11/16/22 Compsci 201, Fall 2022, L23: Iterative DFS BFS 29

https://coursework.cs.duke.edu/cs-201-fall-22/maze-demo

Queue = BFS, Stack = DFS

BFS: FIFO Exploration DFS: LIFO Exploration

search all locations one- Search path as far as

away from start, then possible, backtrack if

two-away, ... need to another branch...
i @ O

11/16/22 Compsci 201, Fall 2022, L23: Iterative DFS BFS 30

Initializing Iterative BFS

* Queue stores nodes we have visited/discovered,
but not explored from yet.

* Explore from one current node at a time.

32 public static void bfs(char start) {

33 Queue<Character> toExplore = new LinkedList<>();
34 char current = start;

35 visited.add(current);

36 toExplore.add(current);

* Queue is FIFI(first-in first-out), so we always explore
from the first/closest (unvisited) node we
discovered, breadth-first!

11/16/22 Compsci 201, Fall 2022, L23: Iterative DFS BFS 31

[terative BFS Loop

While there are nodes we

have not explored from... Explore from the closest

discovered node...

(!toExplore.isEmpty, Look at all neighbors

39 current = toExplore’remove(); of current node...
40 for (char neighbor : alList.get(current)) {
41 1f (!visited.contains(neighbor)) {

42 previous.put(neighbor, curre

43 visited.add(neighbor); If we haven’t seen
44 toExplore.add(neighbor); them before...
45 ¥ Then:

46 } 1. note how we got here

47 } 2. Note we have seen

3. Mark to explore later

11/16/22 Compsci 201, Fall 2022, L23: Iterative DFS BFS 32

Initialize search at A

start: A Adjacency List:
A=[B, D]

B=[A, Ea F]
C=[F]

D=[A, E]

E=[B, Da F]
F=[B, Ca E]

toExplore (queue) previous (map) Visited (set)

A {A}

11/16/22 Compsci 201, Fall 2022, L23: Iterative DFS BFS

33

Remove A from the queue

start: A Adjacency List:

A=[B, D]
B=[A, E: F]
C=[F]

D=[A, E]
E=[B, D: F]
F=[B, C: E]

toExplore (queue) previous (map) Visited (set)

1A}

11/16/22 Compsci 201, Fall 2022, L23: Iterative DFS BFS

34

Find B from A

start: A Adjacency List:
A=[B, D]

B=[A, Ea F]
C=[F]

D=[A, E]

E=[B, Da F]
F=[B, Ca E]

toExplore (queue) previous (map) Visited (set)

B B <- A A, B}

11/16/22 Compsci 201, Fall 2022, L23: Iterative DFS BFS

35

toExplore (queue)

O

Find D from A

start: A

B
D

Note the difference,
add to end of queue!

Adjacency List:

A=[B,
B=[A,
C=[F]
D=[A,
E=[B,
F=[B,

previous (map) Visited (set)

<- A {A, B, D}
<- A

ompsci 201, Fall 2022, L23: Iterative DFS BFS

D]

F]

F]
E]

36

Remove B from queue

B was first in,

start: A 215 Ut et Adjacency List:
A=[B, D]
B=[A, E) F]
C=[F]
D=[A, E]
E=[B, D) F]
F=[B, C) E]

toExplore (queue) previous (map) Visited (set)

D B <- A {A, B, D}
D <- A

11/16/22 Compsci 201, Fall 2022, L23: Iterative DFS BFS

37

start: A

toExplore (queue)

D
E

11/16/22

Find E from B

Adjacency List:
A=[B, D]

B=[A, E, F]
C=[F]

D=[A, E]

E=[B, Da F]
F=[B, Ca E:l

previous (map) Visited (set)

B <- A {A, B, D, E}
D <- A
E <- B

Compsci 201, Fall 2022, L23: Iterative DFS BFS

38

start: A

toExplore (queue)

D
E
F:

11/16/22

Find F from B

Adjacency List:
A=[B, D]

B=[A, E, F]
C=[F]

D=[A, E]

E=[B, Da F]
F=[B, Ca E:l

previous (map) Visited (set)

<- A {A, B, D, E, F}
<- A
<- B
<- B

Compsci 201, Fall 2022, L23: Iterative DFS BFS

M m O o

39

Remove D from queue

start: A Adjacency List:
A=[B, D]

B=[A, Ea F]
C=[F]

D=[A, E]

E=[B, Da F]
F=[B, Ca E]

toExplore (queue) previous (map) Visited (set)

E
F

<- A {A, B, D, E, F}
<- A
<- B
<- B

11/16/22 Compsci 201, Fall 2022, L23: Iterative DFS BFS

M m O o

40

Remove E from queue

start: A Adjacency List:
A=[B, D]

B=[A, Ea F]
C=[F]

D=[A, E]

E=[B, Da F]
F=[B, Ca E]

toExplore (queue) previous (map) Visited (set)

F <- A {A, B, D, E, F}
<- A
<- B

<- B

11/16/22 Compsci 201, Fall 2022, L23: Iterative DFS BFS

M m O o

41

Remove F from queue

start: A Adjacency List:
A=[B, D]

B=[A, E: F]
C=[F]

D=[A, E]

E=[B, D: F]
F=[B, C: E]

toExplore (queue) previous (map) Visited (set)

<- A {A, B, D, E, F}
<- A
<- B
<- B

11/16/22 Compsci 201, Fall 2022, L23: Iterative DFS BFS

M m O o

42

Find C from F

start: A

toExplore (queue) previous (map)

C

O MmO oo

A

A A A A
T I T
Moo W > >

Adjacency List:

A=[B, D]
B=[A, Ea F]
C=[F]

D=[A, E]
E=[B, Da F]
F=[B, Ca E]

Visited (set)

iA, B, D, E, F, C}

11/16/22 Compsci 201, Fall 2022, L23: Iterative DFS BFS

43

Remove C from queue

start: A Adjacency List:
A=[B, D]
B=[A, E: F]
C=[F]
D=[A, E]
E=[B, D: F]
F=[B, C: E]

toExplore (queue) previous (map) Visited (set)

iA, B, D, E, F, C}

Q A Q A

O MmO oo

A
I I
Moo W > >

11/16/22 Compsci 201, Fall 2022, L23: Iterative DFS BFS

44

BFS Search Tree

start: A Adjacency List:
A=[B, D]
B=[A, E) F]
C=[F]
D=[A, E]
E=[B, D) F]
F=[B, C) E]

toExplore (queue) previous (map) Visited (set)

<- A {A, B, D, E, F, C}
<- A
<- B
<- B
<- F

O MmO oo

11/16/22 Compsci 201, Fall 2022, L23: Iterative DFS BFS 45

Comparing DFS and BFS Search
Trees

start: A start: A

previous (map) previous (map)

Length 4 path Length 3 path

from Ato C B <- A from Ato C, B <- A
D <- A shorter! D <- A
E <- D E <- B
F < E F<- B
C <- F C<-F

11/16/22 Compsci 201, Fall 2022, L23: Iterative DFS BFS 46

Pathfinding Properties

* DFS and BFS both find valid paths to all nodes
reachable from the start.

e Can return early if you only want to find a path to a
specific target node

* BFS finds the shortest path to every reachable
node, DFS does not guarantee this.

WOTO
Go to duke.is/wijrfp

Not graded for correctness,
just participation.

Try to answer without looking
back at slides and notes.

https://duke.is/wjrfp

