CompSci 201, L26:
Disjoint Sets

Logistics, Coming up

* Optional APT 11: Not required, will give APT
makeup credit if you do it

* Makeup credit: Will grade it, add that to apt grade if
missing points there.

* “Due” (for makeup credit) Wednesday 11/30 with
grace/late

* Midterm Exam 3 next Monday 12/5

* Project 6: Due next Wednesday 12/7

Midterm Exam 3

* Logistics:
* 60 minutes, in-person, short answer
e Can bring 1 reference/notes page

* Major Topics:
* Trees:
* binary search trees,
* binary heaps,
* recursion
* Red-black trees: Properties yes, rebalance algorithm, no.
* Graphs:
* Recursive & lterative Stack DFS
* |terative Queue BFS
* Weighted graphs, Dijkstra’s algorithm

Minimum Spanning Tree (MST)
Problem

* Given N nodes and M edges, each with a weight/cost...

* Find a set of edges that connect all the nodes with
minimum total cost. (will be a tree)

Weighted undirected graph with:
* Edges labeled with weights/costs
* Minimum spanning tree

highlighted

11/30/22 Compsci 201, Fall 2022, L26: Disjoint Sets

Visualizing Kruskal’s Algorithm

In the visualization:

OO 8 O
* Edges between all pairs of o ©
vertices ?
o) 5 O O
* Weights are implicit by distances O O
e Algorithm greedily grows by e 5
cheapest edge that connects © 5 ° o
disjoint sets/trees. c 0
O
O
O

By Shiyu Ji - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=54420894

Kruskal’s Algorithm in Pseudocode

Input: N node, M edges, M edge weights
* Let MST to an empty set
* Let S be a collection of N disjoint sets, one per node
* While S has more than 1 set:
* Let (u, v) be the minimum cost remaining edge

* Find which sets u and v are in. If not equal:

 Union the sets
e Add (u, v) to MST

e Return MST

Solving Example MST Problem

leetcode.com/problems/min-cost-to-connect-all-
points

Live Coding %
{ >}

cost=4

10 o

9 |

8

7

8 ‘.COSt =9

5 ‘

4

3 |

2 oo
1

cost=4

o * >
0 1 2 3 45 6 7 8

11/30/22 Compsci 201, Fall 2022, L26: Disjoint Sets 7

https://leetcode.com/problems/min-cost-to-connect-all-points

WOTO
Go to duke.is/wendf

Not graded for correctness,
just participation.

Try to answer without looking
back at slides and notes.

https://duke.is/wendf

Disjoint Sets and Union-
Find

Union Find Data Structure

* Aka Disjoint Set Data Structure

e Start with N distinct (disjoint) sets
e consider them labeled by integers: 0, 1, ...

* Union two sets: create set containing both
* label with one of the numbers

* Find the set containing a number
* Initially self, but changes after unions

Disjoint-Set Forest
Implementation

* Each set will be represented by a parent “tree”: Instead of
child pointers, nodes have a parent “pointer”.

e Everything starts as its own tree: a single node

e

itemID O

11/30/22 Compsci 201, Fall 2022, L26: Disjoint Sets 11

Disjoint-Set Forest Union

* Union(7,8)

 Just make leaf/root point to parent[7]

11/30/22 Compsci 201, Fall 2022, L26: Disjoint Sets 12

Disjoint-Set Forest Union

* Union(3,4)
* Just make parent[4] point to parent[3]

AT

itemID O 8

11/30/22 Compsci 201, Fall 2022, L26: Disjoint Sets 13

Disjoint-Set Forest Union

* Union(3,8)

* Multi-level, make

parent[parent[8]] point to
parent[3] 2

itemID O 4 5 6 7 8

11/30/22 Compsci 201, Fall 2022, L26: Disjoint Sets 14

Disjoint-Set Forest Find

* Find(8)
e Return last ancestor of 8.

* Need to traverse the path up.

m——

itemID O 5 6 7 8

11/30/22 Compsci 201, Fall 2022, L26: Disjoint Sets 15

Disjoint-Set Forest Array
Representation

* The “nodes” and “pointers” are just conceptual —
can represent with a simple array, like binary heap.

* Parent array just stores what the itemID node
points to

o'" ”\

itemID O

11/30/22 Compsci 201, Fall 2022, L26: Disjoint Sets 16

Disjoint-Set Forest Find

o _ ,) “last ancestor” is just
18 public int find(int id) {
19 while (id != parent[id]) {

20 1d = parent[id]; Else go to next
21 3 “node up”
22 return id;

23 }
000 ea{\a

itemID O

11/30/22 Compsci 201, Fall 2022, L26: Disjoint Sets 17

Disjoint-Set Forest Union Revisited

25 public void union(int setl, int set2) {

26 int rootl = find(setl); “last ancestors” from initial
27 int root2 = find(set2); setl and initial set2
parent[root2] = rootl; “nodes”

Make one “point to” other at ‘a\a

itemID O

11/30/22 Compsci 201, Fall 2022, L26: Disjoint Sets 18

Worst-Case Runtime Complexity?

- oL d unionCint setl. int set2) What if we...
public void union(int setl, int se .

26 int rootl = find(setl); um.'on(7’8)
27 int root2 = find(set2); um.'on(617)
28 parent[root2] = rootl; union(5,6)

Now find(8) would have union(e,1)

linear runtime complexity!!

itemID O

11/30/22 Compsci 201, Fall 2022, L26: Disjoint Sets 19

Optimization 1: Union by Size

11/30/22

Be careful in how you union.
Always make the “root” for the
set with fewer elements point
to the “root” for the set with
more elements.

Sufficient for worst case
logarithmic efficiency.

Compsci 201, Fall 2022, L26: Disjoint Sets 20

Optimization 1: Union by Size

37 public void union(int setl, int set2) { If already in same
38 int rootl = find(setl); set, nothing to do.
39 int root2 = find(set2);

40 1f (rootl == root2) { return; }

41 1f (setSizes[rootl] < setSizes[root2]) {

42 parent[rootl] = root2;

43 setSizes[root2] += setSizes[rootl];

44 } Make the smaller
45 else { set “point to” the
46 parent[root2] = rootl; bigger set.
47 setSizes[rootl] += setSizes[root2];

48 }

49 size--;

50 }

11/30/22 Compsci 201, Fall 2022, L26: Disjoint Sets 21

Lazy Path Compression

* Lazy path compression:
When ever you traverse
a path in ¥ind, connect

find(5)

all the pointers to the
top.

e Sufficient for amortized
logarithmic runtime
complexity for
union/find operations.

11/30/22 Compsci 201, Fall 2022, L26: Disjoint Sets

22

Disjoint Set Forest Path
Compression

8 public int find(int id) {

9
10
11
12
13
14
15
16
17
18
19
20
21 }

11/30/22

int 1idCopy = 1id;

while (id !'= parent[id]) { Get the “last
) 1d = parent[id]; ancestor” as before

int root = 1id;
id = idCopy; Traverse path again,
while(id != parent[id]) { assigning everything to the

parent[idCopy] = root; “last ancestor”
id = parent[id];
idCopy = 1id;

3

return id;

Compsci 201, Fall 2022, L26: Disjoint Sets 23

Optimized Runtime Complexity

* Optimizations considered separately:
* Union by size: Worst case logarithmic
e Path compression: Amortized logarithmic

* Considered together...?

* Worst case logarithmic, and amortized inverse

Ackermann function a(n).
16 ,65536
2

2
e a(n) <5 forn< 2% =2
* Practically constant for any n you can write down

Remember Kruskal’s Algorithm
Runtime?

Input: N node, M edges, M edge weights

LooD
* Let MST to an empty set ngej?i Imre(dwgc;;st

* Let S be a collection of N disjoint set

* While S has more than 1 set:
 Let (u, v) be the minimum cost remaining edge
* Find which sets u and v are in. If not eg¥®
e Union the sets :
Remove from binary

e Add (u, v) to MST heap, O(log(M))

. O(M(log(M)+€) because C <
Return MST log(M) for our optimized

union find

11/30/22 Compsci 201, Fall 2022, L26: Disjoint Sets 25

WOTO
Go to duke.is/zmgam

Not graded for correctness,
just participation.

Try to answer without looking]
back at slides and notes.

But do talk to your neighbors!

https://duke.is/zmgqm

