Lab 10 - EMS & HJ & INLJ

CompSci 316
Fall 2022

TAS

Presenter: Yuxi Liu

Q&ATA
Session 1(10:15am - 11:30am): Danny Luo, Joyce Wang, Chengyu Wu, Tong Lin, Haibo Xiu
Session 2(1:45pm - 3:00pm): Zhe Wang, Justin Lim, Haibo Xiu

Check-in

e 11/04 01D: 11:05-11:09am
o code: XXXX

e 11/04 02D: 2:15-2:19pm
o code: XXXX

Roadmap

Example of Hash Join (HJ) (Lec9-30)
Example of Index Nested Loop Join (INLJ) (Lec9-41)

Practice of External Merge Sorting (EMS)
(If have time) Performance of SMJ vs. HJ (Lec9-23,24,31,33)

Example: Hash Join

Hash Join: setting

R(A), S(B)

R X 5
RA=SB

B(R)=6,B(S)=9,M=4
Each page of R, S contains just one record

Disk

Original
RelationR, S

J

-
\oY)

Hash Join: partitioning (phase 1)

e Hash function h1 for partitioning = A % 3 for Rand =B % 3 for S

Partitioning for R done, next similar for S [JR @S
Original
Relation®, 3 OUTPUT | Partitions
v 3] @ 0 |_IC>
s Llld |
v z = INPUT it
cC P
E Disk| — g [wledlon
9 17 o [[
E= [d h1=%3)
= 2| J_I] R
o B Ll T8l
- 13 - Ne—

N —— Disk

Hash Join: probing (phase 2)

2. Probing phase

Hash function h2 for probing =A% 2 forRand =B % 2 for S

Probing for partition-o and 15t page of S in partition o,
Similarly for other pages of S, and for partitions 1and 2

Partitions

Hash table for partition-o

Y

Join Result
at the end

>
=9
[

of R& S hash

% function o ©ofR

fel (4 [5].© hz = %2 | B

L G Ge] |1 §hz = %2

o (69]
Input block Output

F.- N for Si block

J M = 4 main memory pages

N~
Disk

1for S blocks (one by one), one for output,
3 for buckets for R-partition using h2

Note: h1 and h2 cannot
be the same, otherwise all
R-blocks in partition-0 will
hash to the same bucket

e Only 2-pass is sufficient
here, since: In each
partition, there exists a
relation that has <=2 (=
M-2) blocks

What if a partition is too large for
memory?

Read it back in and partition it again,
> 2 passes will be needed

Example: Index Nested-loop Join

Index Nested-loop Join: setting

R(A), S(B), M =3 Z \/
Rpa, , _ss® Index blocks

e R.Avalues:7,2,9,8, 3
o 1 R-tuple/block

o SoB(R)=|R[=5

2
e SBvalves: 2237738899 \
o at most 2 S-tuple/block ku
o Sol|S|=9,B(S)=5 Data blocks

e Assume foreign key S.B to primary key R.A
o Each R tuple joins with at most 2 S tuples that fit in 1 data block of S
e B+ tree index on S.B:
o Clustered, 3 levels
o Allindex blocks, data blocks are on disk

Index Nested-loop Join: setting

M=3
R.Avalues: 7,2,9, 8, 3
o 1 R-tuple/block
o SoB(R)=|R|=5
SBvalues: 2,2,3,7,7,8,8,9,9
o at most 2 S-tuple/block
o Sol|S|=9,B(S)=5

Algo:

For every block of R Costof R=B(R) =5
o For every tuple of R in that block

Index blocks

data entry

Data blocks

m Set the value of R.A as the search key

m Retrieve the matching S tuples pointed to by the matching data entries (pointers)

m Output the matching pair of R and S tuples

Index Nested-loop Join: setting

e M=3
e R.Avalues:7,2,9,8, 3 Index blocks /
o 1 R-tuple/block

o SoB(R)=|R|=5

data entry

Algo: Costof R=B(R) =5 __________:§|
e Forevery block of R
o For every tuple of R in that block

Data blocks

m Set the value of R.A as the search key
m Retrieve the matching S tuples pointed to by the matching data entries (pointers)
m Output the matching pair of R and S tuples

So for every R.A value: probing on index blocks + accessing data block

Index Nested-loop Join: setting

e M=2
e R.Avalues:7,2,9,8,3 Index blocks
o 1 R-tuple/block

o SoB(R)=|R|=5 q Z

data entry —

Focus on this example:
1. RA=T:a->b->e TN

RA=2:a->b->d Data blocks

RA=9:a->c->g¢g

RA=8.a->c->f

. RA=3:a->b->d

Each of 1 to 5 needs one extra I/O cost to read the corresponding data block

SAR i

Total I/O costs of index nested-loop join = B(R) + |R|(3+ 1) =25

External Merge Sorting

External Merge Sorting

Suppose you have B(R) = 21 for a relation R and 4 memory blocks available (M = 4). Fill out the following table for
the number of sorted runs and I/O cost in each pass of an external merge sorting (for pass =0, 1, 2, ...)

Pass # of runs for this pass Run sizes I/0 Cost for this pass

0

1

External Merge Sorting

Suppose you have B(R) = 21 for a relation R and 4 memory blocks available (M = 4). Fill out the following table for
the number of sorted runs and I/O cost in each pass of an external merge sorting (for pass =0, 1, 2, ...)

Pass # of runs for this pass Run sizes 1/0 Cost for this pass
0 Ceiling(21/M) =6 4 or1 2*B(R) =42

1

Explanation:

1. Forlevel-0 sorted runs, we have 5 of length 4 and 1 of length 1, since 21 =4+4+4 +4 + 1
2. Each blocks of R are read once and written once, so B(R) + B(R) = 42

External Merge Sorting

Suppose you have B(R) = 21 for a relation R and 4 memory blocks available (M = 4). Fill out the following table for
the number of sorted runs and I/O cost in each pass of an external merge sorting (for pass =0, 1, 2, ...)

Pass # of runs for this pass Run sizes 1/0 Cost for this pass
0 Ceiling(21/M) =6 4 or 1 2*B(R) =42
1 Ceiling(6/(M - 1)) =2 }/4= 12 for the 1st run 2*B(R)=42

2*4 +1=9forthe 2nd run

Explanation:

1. Why (M- 1) -> One memory bl
runs at a time

2. For the first three level-0

3. Forthe next three leve

has only 1 block

k is used to hold the output and flush to disk. So we can combine at most 3 level-0 sorted

ns, they are combined into 1st level-1 run and each of them has 4 blocks (full).
runs, they are combined into 2nd level-1 run and two of them has 4 blocks (full) and the last one

External Merge Sorting

Suppose you have B(R) = 21 for a relation R and 4 memory blocks available (M = 4). Fill out the following table for

the number of sorted runs and I/O cost in each pass of an external merge sorting (for pass =0, 1, 2, ...)

Pass # of runs for this pass Run sizes 1/0 Cost for this pass
0 Ceiling(21/M) =6 4 or 1 2*B(R) =42
1 Ceiling(6/(M - 1)) =2 3*4 =12 for the 1st run 2*B(R)=42
2*4 +1 =9forthe 2nd run
2 Ceiling(2/(M - 1)) =1 12 + 9 = 21 for one run B(R) = 21
/'
Explanation:

1.
2.

Final pass, since w

We don’t

already combined all the blocks into 1 sorted level-2 run
unt the I/Os for the final write/flush to disk

Sort-merge join

R ™p4-5p S

* Sort R and S by their join attributes; then merge
r, s = the first tuplesin sorted R and S
Repeat until one of R and S is exhausted:

If r.A > s.B then s = next tuplein §

elseifr.A < s.B thenr =nexttupleinR

else output all matching tuples, and
r,s=nextinRand S

* I/O’s: sorting + 2B(R) + 2B(S) (always?)
* In most cases (e.g., join of key and foreign key)
* Worst case is B(R) - B(S): everything joins

23

Optimization of SMJ

* Idea: combine join with the (last) merge phase of merge sort

* Sort: produce sorted runs for R and S such that there are
fewer than M of them total

* Merge and join: merge the runs of R, merge the runs of S, and
merge-join the result streams as they are generated!

al

51

Memory
m Merge

e
)

| o
O

Sorted runs

Compute Memory Requirements for
e Two pass SMJ
e Two pass HJ

Performance of SMJ

First Pass 0 +
* If SMJ completes in two passes: Then (merge + join)

* 1/0’s:3 - (B(R) + B(S)) - why 3?
* Memory requirement

¢ We must have enough memory to accommodate one block

M > BR) B
fromeachrun: M > e + -

« M >/B(R) + B(S)
* If SMJ cannot complete in two passes:

* Repeatedly merge to reduce the number of runs as
necessary before final merge and join

31

Performance of (two-pass) hash join

° If haSh jOin Completes in two passes: Partitio;ii;ﬁ;orRdone,next similar for S OR WS
® |/O’S: 3- (B (R) + B (S)) Relation R, $ OUTPUT Partitions
| 3
* Memory requirement: & 3 =
* In the probing phase, we should have enough memory to fit n:o % = INPUT
one partition of R: M — 1 > 2 & € Disk| — @ Il fuhction
=1 = 7 & h1=%3
« M>BR)+1 5 7] &8
* We can always pick R to be the smaller relation, so: - =
~—

M > \/min(B(R),B(S)) +1

Probing for partition-o and 15t page of S in partition o,
Similarly for other pages of S, and for partitions 1and 2
Partitions Hash table for partition-o | Join Result

of R&S hash of R at the end
function 0 1

)
w
© —>
£ cE |3] | |
o0 -
,_% §h2 =%2
5 g
a Input block Output
~ for Si block
GIGIG G2 .
— M = 4 main memory pages Disk

1 for S blocks (one by one), one for output,
3 for buckets for R-partition using h2

Hash join versus SMJ

(Assuming two-pass)
* |/O’s: same
* Memory requirement: hash join is lower

. \/min(B(R),B(S)) +1<+/B(R)+ B(S)
* Hash join wins when two relations have very different sizes

 Other factors
* Hash join performance depends on the quality of the hash
* Might not get evenly sized buckets
* SMJ can be adapted for inequality join predicates
* SMJ wins if R and/or S are already sorted
* SMJ wins if the result needs to be in sorted order

