
Lab 10 - EMS & HJ & INLJ
CompSci 316

Fall 2022

TAs
Presenter: Yuxi Liu

Q&A TA
Session 1(10:15am - 11:30am): Danny Luo, Joyce Wang, Chengyu Wu, Tong Lin, Haibo Xiu
Session 2(1:45pm - 3:00pm): Zhe Wang, Justin Lim, Haibo Xiu

Check-in
● 11/04 01D: 11:05-11:09am

○ code:XXXX
● 11/04 02D: 2:15-2:19pm

○ code:XXXX

Roadmap
● Example of Hash Join (HJ) (Lec9-30)
● Example of Index Nested Loop Join (INLJ) (Lec9-41)
● Practice of External Merge Sorting (EMS)
● (If have time) Performance of SMJ vs. HJ (Lec9-23,24,31,33)

Example: Hash Join

Hash Join: setting
● R(A), S(B)
●
● B(R) = 6, B(S) = 9, M = 4
● Each page of R, S contains just one record

Hash Join: partitioning (phase 1)

● Hash function h1 for partitioning = A % 3 for R and = B % 3 for S

The quality of hash is not
that good here (has
“skew”): the number of
blocks falling into each
bucket is not that even

Hash Join: probing (phase 2)

● Hash function h2 for probing = A % 2 for R and = B % 2 for S ● Note: h1 and h2 cannot
be the same, otherwise all
R-blocks in partition-0 will
hash to the same bucket

● Only 2-pass is sufficient
here, since: In each
partition, there exists a
relation that has <= 2 (=
M-2) blocks

What if a partition is too large for
memory?
Read it back in and partition it again,
> 2 passes will be needed

Example: Index Nested-loop Join

Index Nested-loop Join: setting
● R(A), S(B), M = 3
●
● R.A values: 7, 2, 9, 8, 3

○ 1 R-tuple/block
○ So B(R) = |R| = 5

● S.B values: 2, 2, 3, 7, 7, 8, 8, 9, 9
○ at most 2 S-tuple/block
○ So |S| = 9, B(S) = 5

● Assume foreign key S.B to primary key R.A
○ Each R tuple joins with at most 2 S tuples that fit in 1 data block of S

● B+ tree index on S.B:
○ Clustered, 3 levels
○ All index blocks, data blocks are on disk

Index blocks

Data blocks

Index Nested-loop Join: setting

Algo:
● For every block of R

○ For every tuple of R in that block
■ Set the value of R.A as the search key
■ Retrieve the matching S tuples pointed to by the matching data entries (pointers)
■ Output the matching pair of R and S tuples

Index blocks

Data blocks

● M = 3
● R.A values: 7, 2, 9, 8, 3

○ 1 R-tuple/block
○ So B(R) = |R| = 5

● S.B values: 2, 2, 3, 7, 7, 8, 8, 9, 9
○ at most 2 S-tuple/block
○ So |S| = 9, B(S) = 5

data entry

Index Nested-loop Join: setting

Algo:
● For every block of R

○ For every tuple of R in that block
■ Set the value of R.A as the search key
■ Retrieve the matching S tuples pointed to by the matching data entries (pointers)
■ Output the matching pair of R and S tuples

Index blocks

Data blocks

● M = 3
● R.A values: 7, 2, 9, 8, 3

○ 1 R-tuple/block
○ So B(R) = |R| = 5

So for every R.A value: probing on index blocks + accessing data block

data entry

Focus on this example:
1. R.A = 7: a -> b -> e
2. R.A = 2: a -> b -> d
3. R.A = 9: a -> c -> g
4. R.A = 8: a -> c -> f
5. R.A = 3: a -> b -> d

Each of 1 to 5 needs one extra I/O cost to read the corresponding data block

Index Nested-loop Join: setting

Index blocks

Data blocks

● M = 2
● R.A values: 7, 2, 9, 8, 3

○ 1 R-tuple/block
○ So B(R) = |R| = 5

data entry

a

b c

d e f g

Total I/O costs of index nested-loop join = B(R) + |R|(3 + 1) = 25

External Merge Sorting

External Merge Sorting
Suppose you have B(R) = 21 for a relation R and 4 memory blocks available (M = 4). Fill out the following table for
the number of sorted runs and I/O cost in each pass of an external merge sorting (for pass = 0, 1, 2, …)

Pass # of runs for this pass Run sizes I/O Cost for this pass

0

1

...

External Merge Sorting
Suppose you have B(R) = 21 for a relation R and 4 memory blocks available (M = 4). Fill out the following table for
the number of sorted runs and I/O cost in each pass of an external merge sorting (for pass = 0, 1, 2, …)

Pass # of runs for this pass Run sizes I/O Cost for this pass

0 Ceiling(21/M) = 6 4 or 1 2 * B(R) = 42

1

...

Explanation:
1. For level-0 sorted runs, we have 5 of length 4 and 1 of length 1, since 21 = 4 + 4 + 4 + 4 + 1
2. Each blocks of R are read once and written once, so B(R) + B(R) = 42

External Merge Sorting
Suppose you have B(R) = 21 for a relation R and 4 memory blocks available (M = 4). Fill out the following table for
the number of sorted runs and I/O cost in each pass of an external merge sorting (for pass = 0, 1, 2, …)

Pass # of runs for this pass Run sizes I/O Cost for this pass

0 Ceiling(21/M) = 6 4 or 1 2 * B(R) = 42

1 Ceiling(6/(M - 1)) = 2 3 * 4 = 12 for the 1st run
2 * 4 + 1 = 9 for the 2nd run

2 * B(R) = 42

...

Explanation:
1. Why (M - 1) -> One memory block is used to hold the output and flush to disk. So we can combine at most 3 level-0 sorted

runs at a time
2. For the first three level-0 runs, they are combined into 1st level-1 run and each of them has 4 blocks (full).
3. For the next three level-0 runs, they are combined into 2nd level-1 run and two of them has 4 blocks (full) and the last one

has only 1 block

External Merge Sorting
Suppose you have B(R) = 21 for a relation R and 4 memory blocks available (M = 4). Fill out the following table for
the number of sorted runs and I/O cost in each pass of an external merge sorting (for pass = 0, 1, 2, …)

Pass # of runs for this pass Run sizes I/O Cost for this pass

0 Ceiling(21/M) = 6 4 or 1 2 * B(R) = 42

1 Ceiling(6/(M - 1)) = 2 3 * 4 = 12 for the 1st run
2 * 4 + 1 = 9 for the 2nd run

2 * B(R) = 42

2 Ceiling(2/(M - 1)) = 1 12 + 9 = 21 for one run B(R) = 21

Explanation:
1. Final pass, since we have already combined all the blocks into 1 sorted level-2 run
2. We don’t count the I/Os for the final write/flush to disk

Compute Memory Requirements for
● Two pass SMJ
● Two pass HJ

First Pass 0 +
Then (merge + join)

