TAs

Presenter: Yuxi Liu

Q&A TA
Session 1 (10:15am - 11:30am): Danny Luo, Joyce Wang, Chengyu Wu, Tong Lin, Haibo Xiu
Session 2 (1:45pm - 3:00pm): Zhe Wang, Justin Lim, Haibo Xiu
Check-in

- 11/04 01D: 11:05-11:09am
 - code:XXXX
- 11/04 02D: 2:15-2:19pm
 - code:XXXXX
Roadmap

- Example of Hash Join (HJ) (Lec9-30)
- Example of Index Nested Loop Join (INLJ) (Lec9-41)
- Practice of External Merge Sorting (EMS)
- (If have time) Performance of SMJ vs. HJ (Lec9-23,24,31,33)
Example: Hash Join
Hash Join: setting

- \(R(A), S(B) \)
- \(R \bowtie_{R.A=S.B} S \)
- \(B(R) = 6, B(S) = 9, M = 4 \)
- Each page of \(R, S \) contains just one record
Hash Join: partitioning (phase 1)

- Hash function h1 for partitioning = A % 3 for R and = B % 3 for S

The quality of hash is not that good here (has “skew”): the number of blocks falling into each bucket is not that even.
Hash Join: probing (phase 2)

- Hash function h_2 for probing = $A \% 2$ for R and = $B \% 2$ for S

Note: h_1 and h_2 cannot be the same, otherwise all R-blocks in partition-0 will hash to the same bucket.

Only 2-pass is sufficient here, since: In each partition, there exists a relation that has ≤ 2 ($= M-2$) blocks.

What if a partition is too large for memory?
Read it back in and partition it again, > 2 passes will be needed.
Example: Index Nested-loop Join
Index Nested-loop Join: setting

- $R(A), S(B), M = 3$
- $R \bowtie_{A=S,B} S$
- R.A values: 7, 2, 9, 8, 3
 - 1 R-tuple/block
 - So $B(R) = |R| = 5$
- S.B values: 2, 2, 3, 7, 7, 8, 8, 9, 9
 - at most 2 S-tuple/block
 - So $|S| = 9, B(S) = 5$
- Assume foreign key S.B to primary key R.A
 - Each R tuple joins with at most 2 S tuples that fit in 1 data block of S
- B+ tree index on S.B:
 - Clustered, 3 levels
 - All index blocks, data blocks are on disk
Index Nested-loop Join: setting

- \(M = 3 \)
- R.A values: 7, 2, 9, 8, 3
 - 1 R-tuple/block
 - So \(B(R) = |R| = 5 \)
- S.B values: 2, 2, 3, 7, 7, 8, 8, 9, 9
 - at most 2 S-tuple/block
 - So \(|S| = 9, B(S) = 5 \)

Algo:
- For every block of R
 - For every tuple of R in that block
 - Set the value of R.A as the search key
 - Retrieve the matching S tuples pointed to by the matching data entries (pointers)
 - Output the matching pair of R and S tuples

Cost of R = \(B(R) = 5 \)
Index Nested-loop Join: setting

- M = 3
- R.A values: 7, 2, 9, 8, 3
 - 1 R-tuple/block
 - So B(R) = |R| = 5

Algo:
- For every block of R
 - For every tuple of R in that block
 - Set the value of R.A as the search key
 - Retrieve the matching S tuples pointed to by the matching data entries (pointers)
 - Output the matching pair of R and S tuples

So for every R.A value: probing on index blocks + accessing data block
Focus on this example:
1. R.A = 7: a -> b -> e
2. R.A = 2: a -> b -> d
3. R.A = 9: a -> c -> g
4. R.A = 8: a -> c -> f
5. R.A = 3: a -> b -> d

Each of 1 to 5 needs one extra I/O cost to read the corresponding data block

Total I/O costs of index nested-loop join = B(R) + |R| (3 + 1) = 25
External Merge Sorting
External Merge Sorting

Suppose you have $B(R) = 21$ for a relation R and 4 memory blocks available ($M = 4$). Fill out the following table for the number of sorted runs and I/O cost in each pass of an external merge sorting (for pass = 0, 1, 2, …)

<table>
<thead>
<tr>
<th>Pass</th>
<th># of runs for this pass</th>
<th>Run sizes</th>
<th>I/O Cost for this pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
External Merge Sorting

Suppose you have $B(R) = 21$ for a relation R and 4 memory blocks available ($M = 4$). Fill out the following table for the number of sorted runs and I/O cost in each pass of an external merge sorting (for pass = 0, 1, 2, …)

<table>
<thead>
<tr>
<th>Pass</th>
<th># of runs for this pass</th>
<th>Run sizes</th>
<th>I/O Cost for this pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Ceiling(21/M) = 6</td>
<td>4 or 1</td>
<td>2 * $B(R) = 42$</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Explanation:
1. For level-0 sorted runs, we have 5 of length 4 and 1 of length 1, since $21 = 4 + 4 + 4 + 4 + 1$
2. Each blocks of R are read once and written once, so $B(R) + B(R) = 42$
External Merge Sorting

Suppose you have $B(R) = 21$ for a relation R and 4 memory blocks available ($M = 4$). Fill out the following table for the number of sorted runs and I/O cost in each pass of an external merge sorting (for pass = 0, 1, 2, …)

<table>
<thead>
<tr>
<th>Pass</th>
<th># of runs for this pass</th>
<th>Run sizes</th>
<th>I/O Cost for this pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Ceiling(21/M) = 6</td>
<td>4 or 1</td>
<td>2 * B(R) = 42</td>
</tr>
<tr>
<td>1</td>
<td>Ceiling(6/(M - 1)) = 2</td>
<td>3 * 4 = 12 for the 1st run
2 * 4 + 1 = 9 for the 2nd run</td>
<td>2 * B(R) = 42</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Explanation:

1. Why (M - 1) -> One memory block is used to hold the output and flush to disk. So we can combine at most 3 level-0 sorted runs at a time.
2. For the first three level-0 runs, they are combined into 1st level-1 run and each of them has 4 blocks (full).
3. For the next three level-0 runs, they are combined into 2nd level-1 run and two of them has 4 blocks (full) and the last one has only 1 block.
External Merge Sorting

Suppose you have $B(R) = 21$ for a relation R and 4 memory blocks available ($M = 4$). Fill out the following table for the number of sorted runs and I/O cost in each pass of an external merge sorting (for pass = 0, 1, 2, …)

<table>
<thead>
<tr>
<th>Pass</th>
<th># of runs for this pass</th>
<th>Run sizes</th>
<th>I/O Cost for this pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Ceiling(21/M) = 6</td>
<td>4 or 1</td>
<td>$2 \times B(R) = 42$</td>
</tr>
</tbody>
</table>
| 1 | Ceiling(6/(M - 1)) = 2 | 3 * 4 = 12 for the 1st run
 | | $2 \times B(R) = 42$ | | |
| | | 2 * 4 + 1 = 9 for the 2nd run | |
| 2 | Ceiling(2/(M - 1)) = 1 | 12 + 9 = 21 for one run | $B(R) = 21$ |

Explanation:
1. Final pass, since we have already combined all the blocks into 1 sorted level-2 run
2. We don’t count the I/Os for the final write/flush to disk
Sort-merge join

\[R \bowtie_{R.A = S.B} S \]

- Sort \(R \) and \(S \) by their join attributes; then merge
 - \(r, s \) = the first tuples in sorted \(R \) and \(S \)
 - Repeat until one of \(R \) and \(S \) is exhausted:
 - If \(r. A > s. B \) then \(s \) = next tuple in \(S \)
 - else if \(r. A < s. B \) then \(r \) = next tuple in \(R \)
 - else output all matching tuples, and
 - \(r, s \) = next in \(R \) and \(S \)

- I/O’s: \(\text{sorting} + 2B(R) + 2B(S) \) (always?)
 - In most cases (e.g., join of key and foreign key)
 - Worst case is \(B(R) \cdot B(S) \): everything joins
Optimization of SMJ

• Idea: combine join with the (last) merge phase of merge sort
• **Sort**: produce sorted runs for R and S such that there are fewer than M of them total
• **Merge and join**: merge the runs of R, merge the runs of S, and merge-join the result streams as they are generated!
Compute Memory Requirements for
● Two pass SMJ
● Two pass HJ
Performance of SMJ

• If SMJ completes in two passes:
 • I/O’s: \(3 \cdot (B(R) + B(S))\) - why 3?
 • Memory requirement
 • We must have enough memory to accommodate one block from each run: \(M > \frac{B(R)}{M} + \frac{B(S)}{M}\)
 • \(M > \sqrt{B(R) + B(S)}\)

• If SMJ cannot complete in two passes:
 • Repeatedly merge to reduce the number of runs as necessary before final merge and join
Performance of (two-pass) hash join

• If hash join completes in two passes:
 • I/O’s: $3 \cdot (B(R) + B(S))$
 • Memory requirement:
 • In the probing phase, we should have enough memory to fit one partition of R: $M - 1 > \frac{B(R)}{M - 1}$
 • $M > \sqrt{B(R)} + 1$
 • We can always pick R to be the smaller relation, so:
 $$M > \sqrt{\min(B(R), B(S))} + 1$$
Hash join versus SMJ

(Assuming two-pass)

- I/O’s: same
- Memory requirement: hash join is lower
 \[\sqrt{\min(B(R), B(S))} + 1 < \sqrt{B(R) + B(S)} \]
 - Hash join wins when two relations have very different sizes
- Other factors
 - Hash join performance depends on the quality of the hash
 - Might not get evenly sized buckets
 - SMJ can be adapted for inequality join predicates
 - SMJ wins if \(R \) and/or \(S \) are already sorted
 - SMJ wins if the result needs to be in sorted order