
Introduction
Introduction to Databases

CompSci 316 Fall 2022

Welcome to

CompSci 316: Introduction to Database Systems!!
Fall 2022

2

About us…
• Instructor: Sudeepa Roy

• Associate Professor of Computer Science
• At Duke CS since Fall 2015
• PhD. UPenn, Postdoc: U. of Washington
• Member of “Duke Database Devils” a.k.a. the

database research group Research interests:
• “data”
• data management, database theory, data

analysis, causality and explanations, data repair,
query optimization…

3

Remember to copy Alex on the emails sent to Sudeepa!
Only logistics questions specific to your situation should be sent to Sudeepa+Alex

everything else should be discussed on Ed

Teaching Associate: Alex Chao (not ->)

4

4

Haibo Xiu Tong LinYuxi Liu

Graduate TAs,
UTAs next slide!

Fiona Wu Zhe Wang

Konstantinos
Bailas

Samy Boutouis Neel Gajjar Joshua Guo Alexandra
Lawrence

Joon Young
Lee

Justin Lim Danny Luo Alok Malhotra Harris Masterson

Grace TianAlex Schiff

Jason Qiu

Zachary
ZhengSamia ZamanJoyce Wang Han Zhang

What are the goals of this course?

6

• Learn about “databases” or data management

Why do we care about data? (easy)
7

… The three years of gathering and analyzing
data culminated in what U.S. Sailing calls
their “Rio Weather Playbook,” a body of
critical information about each of the seven
courses only available to the U.S. team…

— FiveThirtyEight, “Will Data Help U.S.
Sailing Get Back On The Olympic Podium?”

Aug 15, 2016

Data =
Money
Information
Power
Fun
in
Science, Business,
Politics, Security
Sports, Education, ….

Wait.. don’t we need to take a Machine Learning or
Statistics course for those things?

8

Pic: https://www.technobuffalo.com/sites/technobuffalo.com/files/styles/xlarge/public/wp/2012/05/confused-student.jpg

Yes, but..

Data doubles every 9 month –
processing power only in 18 months..

9

Moores Law vs. Parkinson’s Law (disk sales in bits..)
Time to process all data doubles every 18 months!
Does your attention span or 24 hours per day double every 18 months?
No, so we need smarter data management and processing techniques!

... So we need to manage this (huge or not-so-huge) data!

10

Also think about building a new App or
website based on data from scratch

• E.g., your own version of mini-Amazon* or a Book
Selling Platform
• Large data! (think about all books in the world or

even in English)

•How do we start?

11

* Many of you are going to do this in the course projects!

The class will be interactive…

Ask any question
Share any thoughts you have
Brainstorm ideas together
No question is too simple to ask!

12

13

Who are the key people?
(book-selling website)

Who are the key people?
(book-selling website)

• At least two types:
• Database admin (assuming they own all copies of all the

books)
• Users who purchase books
• Let’s proceed with these two only

• Other people:
• Sellers
• HR
• Finance
• Who deal with the warehouse of the books
• ….

14

What should the user be able to do?
15

• i.e. what the interface look like? (think about
Amazon)

What should the user be able to do?

• i.e. what the interface look like? (think about
Amazon)

1. Search for books
• With author, title, topic, price range, ….

2. Purchase books
3. Bookmark/add to wishlist

16

What should the platform do?
17

What should the platform do?

1. Returns books as searched by the authors
2. Check that the payment method is valid
3. Update no. of copies as books are sold
4. Manage total money it has
5. Add new books as they are published
6. ….

18

What are the desired and necessary
properties of the platform?

19

What are the desired and necessary
properties of the platform?

• Should be able to handle a large amount of data
• Should be efficient and easy to use (e.g., search with

authors as well as title)
• If there is a crash or loss of power, information should not

be lost or inconsistent
• Imagine a user was in the middle of a transaction when a crash

happened, paid the money, but the book has not been purchased

• No surprises with multiple users logged in at the same time
• Imagine one last copy of a book that two users are trying to

purchase at the same time

• Easy to update and program
• For the admin

20

That was the design phase
(a basic one though)

21

https://i1.wp.com/dynamiclandscapes.vita-learn.org/wp-content/uploads/2019/05/Lets-code.jpg?resize=768%2C432&ssl=1

How about C++, Java, or Python?
On data stored in large files

Sounds simple!

• Text files – for books, customer, …
• Books listed with title, author, price, and no. of

copies
• Fields separated by #’s

22

James Morgan#Durham, NC

... ...
A Tale of Two Cities#Charles Dickens#3.50#7
To Kill a Mockingbird#Harper Lee#7.20#1
Les Miserables#Victor Hugo#12.80#2
... ...

Query by programming

• James Morgan wants to buy “To Kill a Mockingbird”
• A simple script

• Scan through the books file
• Look for the line containing “To Kill a Mockingbird”
• Check if the no. of copies is >= 1
• Bill James $7.20 and reduce the no. of copies by 1

23

James Morgan#Durham, NC

... ...
A Tale of Two Cities#Charles Dickens#3.50#7
To Kill a Mockingbird#Harper Lee#7.20#1
Les Miserables#Victor Hugo#12.80#2
... ...

Better idea than scanning?

What if he changes the “query” and wants to buy a book by Victor Hugo?

Binary search! Keep
file sorted on titles

Revisit: What are the desired and
necessary properties of the platform?

• Should be able to handle a large amount of data
• Should be efficient and easy to use (e.g., search with

authors as well as title)
• If there is a crash or loss of power, information should

not be lost or inconsistent
• Imagine a user was in the middle of a transaction when a

crash happened, paid the money, but the book has not been
purchased

• No surprises with multiple users logged in at the same
time
• Imagine one last copy of a book that two users are trying to

purchase at the same time

• Easy to update and program
• For the admin

24

Try to open
a 10-100 GB file

Try to search
both on a large
flat file

Imagine
programmer’s
task

Imagine adding a new book or updating
Copies (+ allow search) on a
10-100 GB text file

Solution?
25

• DBMS = Database Management System

A DBMS takes care of all of the
following (and more):

• Should be able to handle a large amount of data
• Should be efficient and easy to use (e.g., search with

authors as well as title)
• If there is a crash or loss of power, information should not

be lost or inconsistent
• Imagine a user was in the middle of a transaction when a crash

happened, paid the money, but the book has not been purchased

• No surprises with multiple users logged in at the same time
• Imagine one last copy of a book that two users are trying to

purchase at the same time

• Easy to update and program
• For the admin

26

In an easy-to-code, efficient, and robust way

Index

Concurrency

Control
Recovery

Declarative

Optimization

* We will learn
these in the course!

DBMS helps the big ones!
27

Note: Not always the “standard” DBMS (called Relational DBMS),
but we need to know pros and cons of all alternatives

CompSci 316 gives an intro to DBMS
• How can a user use a DBMS (programmer’s/designer’s

perspective)
• Run queries, update data (SQL, Relational Algebra)
• Design a good database (ER diagram, normalization)
• Use different types of data (Mostly relational, also XML/JSON)

• How does a DBMS work (system’s or admin’s perspective,
also for programmers for writing better queries)
• Storage, index
• Query processing, join algorithms, query optimizations
• Transactions: recovery and concurrency control

• Glimpse of advanced topics and other DBMS
• NOSQL, Spark (big data)
• Data mining, Parallel DBMS

• Hands-on experience in class projects by building an end-to-
end website or an app that runs on a database

28

Misc. course info
• All information available on the Course Website:

https://www2.cs.duke.edu/courses/fall22/compsci316d/
• Course info; tentative schedule and reference sections in the book; lecture

slides, assignments, help docs, …

• Book: Database Systems: The Complete Book, by
H. Garcia-Molina, J. D. Ullman, and J. Widom. 2nd Ed.

• Programming: VM required, need significant programming on different
platforms and languages, info on Google credit to be updated

• Prerequisite: CompSci 201 + CompSci 210/250, or you would have to
learn some concepts yourself

• Q&A on Ed Discussion Board
• Grades, sample solutions on Sakai
• Submissions on Gradescope and Gradiance
• Watch Ed for announcements
• Reach out to both Sudeepa and Alex only for questions on logistics

applicable only to you

29

https://www2.cs.duke.edu/courses/fall22/compsci316d/

Important: Grading
Absolute but adjustable grading
Guarantees:
[90%, 100%] A- / A / A+
[80%, 90%) B- / B / B+
[70%, 80%) C- / C / C+
[60%, 70%) D

• Scale will not go upwards but can get downwards,
i.e., grades go higher (e.g., if an exam is too hard)
• If an exam is too easy – it is totally my responsibility

• You should have a fair idea about where you stand
at any point in class

30

Duke Community Standard

• See course website for link
• Group discussion for assignments is okay (and

encouraged), but
• Acknowledge any help you receive from others
• Make sure you “own” your solution
• Cannot find solution from the Web and cannot get help

anyone who is not in this class

• All suspected cases of violation will be aggressively
pursued
• If you are unsure – ask on Ed or email Sudeepa/Alex

31

Course load / Grading
• (See course webpage for full details and late policy for each)

• Homework assignments (25%) + Gradiance (9%)
• Each homework has same weight, due in about 7-10 days
• Gradescope for programming problems, some with immediate feedback,

some written solutions and manual grading
• Gradiance: immediately and automatically graded, highest score

recorded, no extension, lowest 2 scores dropped

• Midterm (17%) and final (18% each)
• Open book, open notes
• No communication/Internet whatsoever
• Final is comprehensive, but may emphasize the second half of the course

32

Course load / Grading (contd.)
• Course project (24%)

• Details to be given in the next 1-2 weeks
• Strictly 5 members unless class size % 5 is not zero – then some groups

with 4 or 6 members with permission from instructors

• Discussion Sessions (5%)
• To practice problems, programming or set up help, project progress etc.,

with help from multiple Tas
• Lowest three scores dropped

• Communication (2%)
• For feedback and information asked from the students, all required

• Extra credit (2% above 100%)
• Extra credit problems in HW and exams – lowest 25% scores dropped

33

Projects
• Fixed project Option: Mini-amazon

• Open project Option: Your own idea! (More work, more fun)
• From previous years:
• RA: next-generation relational algebra interpreter

• You may get to try it out for Homework #1!
• Managing tent shifts and schedules!
• Tutor-tutee matching
• What’s in my fridge and what can I cook?
• Hearsay: manage your own musics
• Dining at Duke (and deliver meals to students)
• National Parklopedia: a website to find information about national parks

• Browse through Lec-1 of Fall’21 for more examples

• Project-details doc will be posted in the next 1-2 weeks

• Start looking for 4 other members from the same discussion session – think whether you want
to do the fixed project with more specifications provided or be creative in an open project!

34

Relational Data Model

35

Let’s get started!

What is a good model to store data?
Tree? Nested data? Graph?

(just) Tables!

Edgar F. Codd (1923-2003)

• Pilot in the Royal Air Force in WW2
• Inventor of the relational model

and algebra while at IBM
• Turing Award, 1981

36

http://en.wikipedia.org/wiki/File:Edgar_F_Codd.jpg

RDBMS = Relational DBMS

The famous “Beers” database
37

Bars
Each has an address

Drinkers
Each has an address

Beers
Each has a brewer

Drinkers Frequent Bars
“X” times a week

Bars Serve Beers
At price “Y”

Drinkers Likes Beers

(Later in ER diagram – how to
design a relational database)

“Beers” as a Relational Database
38

bar beer price

The Edge Budweiser 2.50

The Edge Corona 3.00

Satisfaction Budweiser 2.25

Name brewer

Budweiser Anheuser-Busch Inc.

Corona Grupo Modelo

Dixie Dixie Brewing

name address

Amy 100 W. Main Street

Ben 101 W. Main Street

Dan 300 N. Duke Street

name address

The Edge 108 Morris
Street

Satisfaction 905 W. Main
Street

drinker bar times_a_week

Ben Satisfaction 2

Dan The Edge 1

Dan Satisfaction 2

drinker beer

Amy Corona

Dan Budweiser

Dan Corona

Ben Budweiser

See online database for more tuples

Bar

Beer

Drinker

Likes

Frequents

Serves

Relational data model
• A database is a collection of relations (or tables)
• Each relation has a set of attributes (or columns)
• Each attribute has a name and a domain (or type)

• Set-valued attributes are not allowed (e.g., you cannot store a
list/set of bars in a cell, all cells have to contain atomic values)

• Each relation contains a “set” of tuples (or rows)
• Each tuple has a value for each attribute of the relation
• Duplicate tuples are not allowed (Two tuples are duplicates if they

agree on all attributes)
• Ordering of rows doesn’t matter (even though output is

always in some order)

• However, SQL supports “bag”
or duplicate tuples (why?)

FSimplicity is a virtue
• not a weakness!

39

bar beer price

The Edge Budweiser 2.50

The Edge Corona 3.00

Satisfaction Budweiser 2.25

Serves

Schema vs. instance
• Schema

• Beer (name string, brewer string)
• Serves (bar string, beer string, price float)
• Frequents (drinker string, bar string, times_a_week int)

• Instance
• Actual tuples or records

40

bar beer price

The Edge Budweiser 2.50

The Edge Corona 3.00

Satisfaction Budweiser 2.25

Name brewer

Budweiser Anheuser-Busch Inc.

Corona Grupo Modelo

Dixie Dixie Brewing

drinker bar times_a_week

Ben Satisfaction 2

Dan The Edge 1

Dan Satisfaction 2
Beer

Frequents

Serves

FCompare to types vs. collections of
objects of these types in a programming
language

Announcements (Tue, 08/30)

• You are/will be on Sakai, Ed, Gradescope by the
next class

• First discussion session on Friday about setting up
VM and some practice problems

• Please follow Ed posts, all notifications will be
posted there

• First homework to be released soon

41

SQL: Querying a RDBMS
• SQL: Structured Query Language

• Pronounced “S-Q-L” or “sequel”
• The standard query language supported by most DBMS
• First developed at IBM System R
• Follows ANSI standards

42

SQL is Declarative:

Programmer specifies what answers a query should return,
but not how the query is executed

DBMS picks the best execution strategy based on availability of indexes,
data/workload characteristics, etc.
FProvides physical data independence

Not a “Procedural” or “Operational” language like C++, Java, Python

Basic queries: SFW statement

• SELECT 𝐴!, 𝐴", …, 𝐴#
FROM 𝑅!, 𝑅", …, 𝑅$
WHERE 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

• SELECT, FROM, WHERE are often referred to as
SELECT, FROM, WHERE “clauses”

43

Example: reading a table

• SELECT *
FROM Serves

• Single-table query
• WHERE clause is optional
• * is a short hand for “all columns”

44

bar beer price

The Edge Budweiser 2.50

The Edge Corona 3.00

Satisfaction Budweiser 2.25

Serves

Example: selecting few rows
• SELECT beer AS mybeer

FROM Serves
WHERE price < 2.75

• SELECT beer
FROM Serves
WHERE bar = ‘The Edge’

45

bar beer price

The Edge Budweiser 2.50

The Edge Corona 3.00

Satisfaction Budweiser 2.25

Serves

• SELECT list can contain expressions
Can also use built-in functions such as SUBSTR, ABS, etc.

• String literals (case sensitive) are enclosed in single quotes
• “AS” is optional
• Do not want duplicates? Write SELECT DISTINCT beer …

What does these return?

Example: Join

• Find addresses of all bars that ‘Dan’ frequents

• Which tables do we need?

46

Example: Join

• Find addresses of all bars that ‘Dan’ frequents

47

bar beer price

The Edge Budweiser 2.50

The Edge Corona 3.00

Satisfaction Budweiser 2.25

Name brewer

Budweiser Anheuser-Busch Inc.

Corona Grupo Modelo

Dixie Dixie Brewing

name address

Amy 100 W. Main Street

Ben 101 W. Main Street

Dan 300 N. Duke Street

name address

The Edge
108 Morris
Street

Satisfaction
905 W. Main
Street

drinker bar times_a_week

Ben Satisfaction 2

Dan The Edge 1

Dan Satisfaction 2

drinker beer

Amy Corona

Dan Budweiser

Dan Corona

Ben Budweiser

Bar

Beer

Drinker

Likes

Frequents

Which tables
do we need?

How do we
combine them?

Example: Join
• Find addresses of all bars that ‘Dan’ frequents

• SELECT B.address
FROM Bar B, Frequents F
WHERE B.name = F.bar

AND F.drinker = ‘Dan’

• Okay to omit table_name in
table_name.column_name
if column_name is unique

• Can use “Aliases” for
convenience
• “Bar as B” or “Bar B”

48

name address

The Edge 108 Morris
Street

Satisfaction 905 W. Main
Street

drinker bar times_a_week

Ben Satisfaction 2

Dan The Edge 1

Dan Satisfaction 2

Bar

Frequents

END OF LECTURE 1

