
Relational Database Design: 
E/R-Relational Translation

Introduction to Databases

CompSci 316 Fall 2022



E/R model: review

• Entity sets
• Keys

• Weak entity sets

• Relationship sets
• Attributes on relationships

• Multiplicity

• Roles

• Binary versus 𝑛-ary relationships
• Modeling 𝑛-ary relationships with weak entity sets and binary 

relationships

• ISA relationships

2



Case study 1

• Design a database representing cities, counties, and 
states
• For states, record name and capital (city)

• For counties, record name, area, and location (state)

• For cities, record name, population, and location (county 
and state)

• Assume the following:
• Names of states are unique

• Names of counties are only unique within a state

• Names of cities are only unique within a county

• A city is always located in a single county

• A county is always located in a single state

3



Case study 1: first design

• County area information is repeated for every city 
in the county
Redundancy is bad (why?)

• State capital should really be a city
Should “reference” entities through explicit 

relationships

4

Cities In States

name

capital

name

population

county_area

county_name



Case study 1: second design

• Technically, nothing in this design prevents a city in 
state 𝑋 from being the capital of another state 𝑌, 
but oh well…

5

Cities

IsCapitalOf

name

population

Counties

name

area

name

In

In States



Case study 2

• Design a database consistent with the following:
• A station has a unique name and an address, and is 

either an express station or a local station

• A train has a unique number and an engineer, and is 
either an express train or a local train

• A local train can stop at any station

• An express train only stops at express stations

• A train can stop at a station for any number of times 
during a day

• Train schedules are the same every day

6



Case study 2: first design

• Nothing in this design prevents express trains from 
stopping at local stations
We should capture as many constraints as possible

• A train can stop at a station only once during a day
We should not introduce unintended constraints

7

Trains StopsAt Stations

name

address

number

E/L?

engineer

E/L? time



Case study 2: second design
8

Trains Stations

name

address

number

engineer

time

ExpressTrains

LocalTrains LocalStations

ExpressStations

ISA

LocalTrainStops

ISA

time

ExpressTrainStops

Is the extra complexity worth it?

No double-diamonds here 
because train number + time 
uniquely determine a stop



Database design steps: review

• Understand the real-world domain being modeled

• Specify it using a database design model (e.g., E/R)

• Translate specification to the data model of DBMS 
(e.g., relational)

• Create DBMS schema

Next: translating E/R design to relational schema

9



Translating entity sets

• An entity set translates directly to a table
• Attributes → columns

• Key attributes → key columns

10

Users Groups

gid

name

IsMemberOf

uid

name

fromDate

User (uid, name) Group (gid, name)



Translating weak entity sets

• Remember the “borrowed” key attributes

• Watch out for attribute name conflicts

11

Rooms In Buildings

name

year

number

capacity

In

Seats

number

L/R?
Building (name, year)

Room (building_name, room_number, capacity)
Seat (building_name, room_number, seat_number, left_or_right)



Translating relationship sets

• A relationship set translates to a table
• Keys of connected entity sets → columns

• Attributes of the relationship set (if any) → columns

• Multiplicity of the relationship set determines the key of 
the table

12

Users Groups

gid

name

IsMemberOf

uid

name

fromDate

Member (uid, gid, fromDate)



More examples
13

Users IsMemberOf

member

initiator

Groups

Users IsParentOf

parent

child

Parent (parent_uid, child_uid)

Member (uid, initiator_uid, gid)



Translating double diamonds?

• Recall that a double-diamond (supporting) 
relationship set connects a weak entity set to 
another entity set

• No need to translate because the relationship is 
implicit in the weak entity set’s translation

14

Rooms In Buildings

name

year

number

capacity

In

Seats

number

L/R?

RoomInBuilding
(room_building_name, room_number,

building_name)
is subsumed by
Room (building_name, room_number, capacity)



Translating subclasses & ISA: approach 1

• Entity-in-all-superclasses approach (“E/R style”)
• An entity is represented in the table for each subclass to 

which it belongs

• A table includes only the attributes directly attached to 
the corresponding entity set, plus the inherited key

15

Users Groups

gid

name

IsMemberOf

uid

name

fromDate

avatar PaidUsers

ISA

Group (gid, name)
User (uid, name)
Member (uid, gid, from_date)
PaidUser (uid, avatar)

〈142, Bart〉
〈456, Ralph〉

〈456, ☺〉

∈

∈



Translating subclasses & ISA: approach 2

• Entity-in-most-specific-class approach (“OO style”)
• An entity is only represented in one table (the most 

specific entity set to which the entity belongs)

• A table includes the attributes attached to the 
corresponding entity set, plus all inherited attributes

16

Users Groups

gid

name

IsMemberOf

uid

name

fromDate

avatar PaidUsers

ISA

Group (gid, name)
User (uid, name)
Member (uid, gid, from_date)
PaidUser (uid, name, avatar)

〈142, Bart〉

〈456, Ralph, ☺〉

∈

∈



Translating subclasses & ISA: approach 3

• All-entities-in-one-table approach (“NULL style”)
• One relation for the root entity set, with all attributes found in 

the network of subclasses (plus a “type” attribute when 
needed)

• Use a special NULL value in columns that are not relevant for a 
particular entity

17

Users Groups

gid

name

IsMemberOf

uid

name

fromDate

avatar PaidUsers

ISA

Group (gid, name)
User (uid, name, avatar)
Member (uid, gid, from_date)

〈142, Bart , NULL〉
〈456, Ralph, ☺〉

∈



Comparison of three approaches

• Entity-in-all-superclasses
• User (uid, name), PaidUser (uid, avatar)

• Pro: 

• Con:

• Entity-in-most-specific-class
• User (uid, name), PaidUser (uid, name, avatar)

• Pro:

• Con:

• All-entities-in-one-table
• User (uid, [type, ]name, avatar)

• Pro:

• Con:

18

All users are found in one table

Attributes of paid users are scattered in different tables

All attributes of paid users are found in one table

Users are scattered in different tables

Everything is in one table

Lots of NULL’s; complicated if class hierarchy is complex



A complete example
19

Trains Stations

name

address

number

engineer

time

ExpressTrains

LocalTrains LocalStations

ExpressStations

ISA

LocalTrainStops

ISA

time

ExpressTrainStops

Train (number, engineer)
LocalTrain (number)
ExpressTrain (number)

Station (name, address)
LocalStation (name)
ExpressStation (name)

LocalTrainStop (local_train_number, time)

ExpressTrainStop (express_train_number, time)

LocalTrainStopsAtStation (local_train_number, time, station_name)

ExpressTrainStopsAtStation (express_train_number, time,
express_station_name)

merge

merge



Simplifications and refinements

Train (number, engineer), LocalTrain (number), ExpressTrain (number)
Station (name, address), LocalStation (name), ExpressStation (name)
LocalTrainStop (local_train_number, station_name, time)
ExpressTrainStop (express_train_number, express_station_name, time)

• Eliminate LocalTrain table
• Redundant: can be computed as 

𝜋𝑛𝑢𝑚𝑏𝑒𝑟 𝑇𝑟𝑎𝑖𝑛 − 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑇𝑟𝑎𝑖𝑛

• Slightly harder to check that local_train_number is 
indeed a local train number

• Eliminate LocalStation table
• It can be computed as 𝜋𝑛𝑢𝑚𝑏𝑒𝑟 𝑆𝑡𝑎𝑡𝑖𝑜𝑛 − 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑆𝑡𝑎𝑡𝑖𝑜𝑛

20



An alternative design

Train (number, engineer, type)

Station (name, address, type)

TrainStop (train_number, station_name, time)

• Encode the type of train/station as a column rather 
than creating subclasses

• What about the following constraints?
• Type must be either “local” or “express”

• Express trains only stop at express stations

They can be expressed/declared explicitly as database 
constraints in SQL (as we will see later in course)

• Arguably a better design because it is simpler!

21



Design principles

• KISS
• Keep It Simple, Stupid

• Avoid redundancy
• Redundancy wastes space, complicates modifications, 

promotes inconsistency

• Capture essential constraints, but don’t introduce 
unnecessary restrictions

• Use your common sense
• Warning: mechanical translation procedures given in this 

lecture are no substitute for your own judgment

• Practice ethical design
• Your database design influences everything built around 

it and can have profound effects on real people 

22

http://ungenius.files.wordpress.com/2010/03/thehomer.jpg


