
(More) SQL
Introduction to Databases

CompSci 316 Fall 2022



Announcements (09/13 - Tuesday)
• Gradiance-1 due on 9/14 Wednesday 10 pm

• No extensions/late days
• HW-1 due on 9/15 Thursday 10 pm

• Check late / STINF policy: 
https://courses.cs.duke.edu/fall22/compsci316d/#workload

• HW-2 (ERD) & HW-3 (SQL) to be released soon
• Due HW-2: 9/22 (Thurs) & HW-3: 9/29 (Thurs)

• Discussions:
• D3 on ERD & SQL (new iRex system for debugging
• D4 for SQL and solving 2 HW-3 problems

• Project team-mates due on 9/16 Friday 5 pm
• No. of student % 5 = 3 in both discussions
• 3 groups will have one student extra, preference to open projects, 

email to Alex and me 
• Use spreadsheets if you are looking for teams/team-mates, links 

on Ed – there are groups looking for team-mates or add an entry!

2

https://courses.cs.duke.edu/fall22/compsci316d/


Announcements (09/13 - Tuesday)
• Suggestions for HW-1
• Solve problems in baby steps, use :- instead of a giant query
• s :- \select_{bar = ‘Satisfaction’} Likes;

\project_{beer} s;
• Remember: last statement cannot have assignments :-
• Start backward
• “Find drinkers who frequent ONLY bars that serve EVERY 

beers they like”
• Which drinkers should not be in the answer? Which bars “disqualify” 

them?
• Compute those drinkers and remove them from the final answers
• ONLY, EVERY, DO NOT etc. à non-monotone operators, need 

negation “-”
• Get to “SOME” for queries without negation, but multiple negation 

steps might be needed (disqualified drinkers = “drinkers who 
frequent SOME bars that ….”)

3



Recap: Basic SQL from Lecture 1-2
• Find addresses of all bars that ‘Dan’ frequents

• SELECT B.address
FROM Bar B, Frequents F
WHERE B.name = F.bar

AND F.drinker = ‘Dan’

We discussed
• SELECT-FROM-WHERE
• DISTINCT
• ORDER BY
• Bag vs. Set semantics (why bag?)
• Semantic of SQL evaluation (?)

4

name address

The Edge 108 Morris 
Street

Satisfaction 905 W. Main 
Street

drinker bar times_a_week

Ben Satisfaction 2

Dan The Edge 1

Dan Satisfaction 2

Bar

Frequents



SQL set and bag operations

• UNION, EXCEPT, INTERSECT
• Set semantics

• Duplicates in input tables, if any, are first eliminated
• Duplicates in result are also eliminated (for UNION)

• Exactly like set ∪, −, and ∩ in relational algebra

• UNION ALL, EXCEPT ALL, INTERSECT ALL
• Bag semantics
• Think of each row as having an implicit count (the 

number of times it appears in the table)
• Bag union: sum up the counts from two tables
• Bag difference: proper-subtract the two counts
• Bag intersection: take the minimum of the two counts

5



Examples of bag operations
6

fruit

apple

apple

orange

fruit

apple

orange

orange

Bag1 Bag2

(SELECT * FROM Bag1)
UNION ALL
(SELECT * FROM Bag2);

fruit

apple

apple

orange

apple

orange

orange

(SELECT * FROM Bag1)
EXCEPT ALL
(SELECT * FROM Bag2);

fruit

apple

(SELECT * FROM Bag1)
INTERSECT ALL
(SELECT * FROM Bag2);

fruit

apple

orange



Examples of set versus bag operations

Poke (uid1, uid2, timestamp)

• (SELECT uid1 FROM Poke)
EXCEPT
(SELECT uid2 FROM Poke);
• Users who poked others but never got poked by others

• (SELECT uid1 FROM Poke)
EXCEPT ALL
(SELECT uid2 FROM Poke);
• Users who poked others more than others poke them

7



Examples of set versus bag operations

Poke (uid1, uid2, timestamp)

• (SELECT uid1 FROM Poke)
EXCEPT
(SELECT uid2 FROM Poke);
• Users who poked others but never got poked by others

• (SELECT uid1 FROM Poke)
EXCEPT ALL
(SELECT uid2 FROM Poke);
• Users who poked others more than others poke them

8

SQL does not complain on postgres/pgweb
for different attribute names if this is the final query
Check on pgweb
(select name from drinker) 
except 
(select drinker from likes)



FNext: how to “nest” SQL queries 
and write sub-queries?

9



Table subqueries
• Use query result as a table
• In set and bag operations, FROM clauses, etc.
• A way to “nest” queries

• Example: names of users who poked others more 
than others poked them

• SELECT DISTINCT name
FROM User,

((SELECT uid1 AS uid FROM Poke)
EXCEPT ALL
(SELECT uid2 AS uid FROM Poke))
AS T

WHERE User.uid = T.uid;

10

Poke (uid1, uid2, timestamp)



IN subqueries

• 𝑥 IN (𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦) checks if 𝑥 is in the result of 
𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦
• Example: users (all columns) at the same age as 

(some) Bart

• SELECT *
FROM User
WHERE age IN (SELECT age

FROM User
WHERE name = 'Bart');

11

User(uid, name, age, pop)

Let’s first try without sub-queries

You can use NOT IN too



EXISTS subqueries

• EXISTS (𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦) checks if the result of 𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦
is non-empty
• Example: users at the same age as (some) Bart
• SELECT *

FROM User AS u
WHERE EXISTS (SELECT * FROM User

WHERE name = 'Bart'
AND age = u.age);

• This happens to be a correlated subquery—a subquery 
that references tuple variables in surrounding queries

12

You can use NOT EXISTS too

User(uid, name, age, pop)



Semantics of subqueries

• SELECT *
FROM User AS u
WHERE EXISTS (SELECT * FROM User

WHERE name = 'Bart'
AND age = u.age);

• For each row u in User (called “binding”)
• Evaluate the subquery with the value of u.age
• If the result of the subquery is not empty, output u.*

• The DBMS query optimizer may choose to process 
the query in an equivalent, but more efficient way 
(example?)

13

Remember SQL evaluation!
FROM-WHERE-SELECT

User(uid, name, age, pop)



“WITH” clause – very useful!
• You will find “WITH” clause very useful!

WITH Temp1 AS
(SELECT ….. ..), 
Temp2 AS
(SELECT ….. ..)

SELECT X, Y
FROM TEMP1, TEMP2
WHERE….

• Can simplify complex nested queries

14

Example: users at the same age as (some) Bart
WITH BartAge AS

(SELECT age 
FROM User
WHERE name = ‘Bart’)

SELECT U.uid, U.name, U.age, U.pop
FROM User U, BartAge B
WHERE U.age = B.age

WITH clause 
not really needed
for this query!

User(uid, name, age, pop)



Aggregates

15



Aggregates

• Standard SQL aggregate functions: COUNT, SUM, 
AVG, MIN, MAX

• Example: number of users under 18, and their 
average popularity
• SELECT COUNT(*), AVG(pop)

FROM User
WHERE age < 18;
• COUNT(*) counts the number of rows

16User(uid, name, age, pop)



Aggregates with DISTINCT

• Example: How many users are in some group?

• SELECT COUNT(DISTINCT uid)
FROM Member;

is equivalent to:

• SELECT COUNT(*)
FROM (SELECT DISTINCT uid FROM Member);

17Member(uid, gid)



FNext: Group-by

18

Examples of GROUP BY & SUM first



19

A B C

A1 B1 10

A2 B1 8

A1 B1 10

A2 B3 8

A2 B1 6

A2 B2 2

SELECT A, B, SUM(C) AS S
FROM R
GROUP BY A, B

Relation R

A B S

A1 B1 20

A2 B1 14

A2 B3 8

A2 B2 2

SELECT A, SUM(C) AS S
FROM R
GROUP BY A
A S

A1 20

A2 24

SELECT B, SUM(C) AS S
FROM R
GROUP BY B

B S

B1 34

B3 8

B2 2

SELECT A
FROM R
GROUP BY A
A

A1

A2

SELECT SUM(C) AS S
FROM R
GROUP BY A
S

20

24

SELECT SUM(C) AS S
FROM R

S

44
SELECT A, SUM(C) AS S
FROM R
GROUP BY A, B

A S

A1 20

A2 14

A2 8

A2 2



Grouping

• SELECT … FROM … WHERE …
GROUP BY list_of_columns;

• Example: compute average popularity for 
each age group
• SELECT age, AVG(pop)

FROM User
GROUP BY age;

20

User(uid, name, age, pop)



What did you see in the examples?

• Intuitively, form the groups based on the same 
values of “all attributes” specified in the group-by 
clause

• Output only one row in the select clause per group 
– apply aggregate if present in select

21



Semantics of GROUP BY
SELECT … 
FROM … 
WHERE … 
GROUP BY …;
• Compute FROM (×)
• Compute WHERE (𝜎)
• Compute GROUP BY: group rows according to the 

values of GROUP BY columns
• Compute SELECT for each group (𝜋)

• For aggregation functions with DISTINCT inputs, first eliminate 
duplicates within the group

FNumber of groups = 
number of rows in the final output

22

See example
On the next slide first

(1)
(2)

(3)

(4)



Example of computing GROUP BY
SELECT age, AVG(pop) FROM User GROUP BY age;

23

uid name age pop

142 Bart 10 0.9

857 Lisa 8 0.7

123 Milhouse 10 0.2

456 Ralph 8 0.3

Compute GROUP BY: group 
rows according to the values 
of GROUP BY columns

uid name age pop

142 Bart 10 0.9

123 Milhouse 10 0.2

857 Lisa 8 0.7

456 Ralph 8 0.3

Compute SELECT
for each group 

age avg_pop

10 0.55

8 0.50

User(uid, name, age, pop)



Aggregates with no GROUP BY

• An aggregate query with no GROUP BY clause = 
all rows go into one group
SELECT AVG(pop) FROM User;

24

uid name age pop

142 Bart 10 0.9

857 Lisa 8 0.7

123 Milhouse 10 0.2

456 Ralph 8 0.3

Group all rows 
into one group

uid name age pop

142 Bart 10 0.9

857 Lisa 8 0.7

123 Milhouse 10 0.2

456 Ralph 8 0.3

Aggregate over 
the whole group

avg_pop

0.525

User(uid, name, age, pop)



Restriction on SELECT

• If a query uses aggregation/group by, then every 
column referenced in SELECT must be either
• Aggregated, or
• A GROUP BY column

Why?
FThis restriction ensures that any SELECT expression 

produces only one value for each group

25

Examples in class!



Examples of invalid queries

• SELECT uid, age
FROM User GROUP BY age;
• Recall there is one output row per group
• There can be multiple uid values per group

• SELECT uid, MAX(pop) FROM User;
• Recall there is only one group for an aggregate query 

with no GROUP BY clause
• There can be multiple uid values
• Wishful thinking (that the output uid value is the one 

associated with the highest popularity) does NOT work

26

WRONG!

WRONG!

Which one is correct?

User(uid, name, age, pop)

END OF LECTURE 5 on 9/13



Announcements (09/15 - Thursday)
• Remember to email both Sudeepa & Alex if you need to reach out to us

• To ensure that you get a faster response
• All technical help, HW, Quiz etc. only on Ed – emails only for logistics.

• HW-1 due TODAY 9/15 Thursday 10 pm
• See post on Ed for collaboration policy
• Check late / STINF policy: https://courses.cs.duke.edu/fall22/compsci316d/#workload

• Help on Ed might be slow at night, and may stop at 10 pm, get help by the last OH of the day!

• Gradiance-2 (ERD) due on 9/21 Wednesday 10 pm
• No extensions/late days – plan ahead for occasional downtime & overload!

• HW-2 (ERD) & HW-3 (SQL) to be released soon
• Due HW-2: 9/22 (Thurs) & HW-3: 9/29 (Thurs)

• Discussions:
• D3 on ERD & SQL (new iRex system for debugging)
• D4 for SQL and solving 2 HW-3 problems

• Project team-mates due on 9/16 Friday 5 pm – PLEASE MAKE SURE THAT YOU HAVE A 
TEAM & 5 MEMBERS!
• 3 groups in each discussion will have one student extra, preference to open projects, email to 

Alex and me 
• Use spreadsheets if you are looking for teams/team-mates, links on Ed – there are groups 

looking for team-mates or add an entry!
• Also write on Ed or fill out google form Alex mentioned on Ed.

27

https://courses.cs.duke.edu/fall22/compsci316d/


28

FNext: HAVING

Examples of HAVING
HAVING can have any aggregates or

group by attributes without aggregates



29

A B C

A1 B1 10

A2 B1 8

A1 B1 10

A2 B3 8

A2 B1 6

A2 B2 2

SELECT A, B, SUM(C) AS S
FROM R
GROUP BY A, B
HAVING SUM(C) > 8 

Relation R

A B S

A1 B1 20

A2 B1 14

A2 B3 8

A2 B2 2

SELECT A, SUM(C) AS S
FROM R
GROUP BY A
HAVING SUM(C) > 8 

A S

A1 20

A2 24

SELECT B, SUM(C) AS S
FROM R
GROUP BY B
HAVING SUM(C) > 8 

B S

B1 34

B3 8

B2 2
SELECT A
FROM R
GROUP BY A
HAVING SUM(C) > 8 

A

A1

A2

SELECT SUM(C) AS S
FROM R
GROUP BY A
HAVING SUM(C) > 8 

S

20

24

SELECT SUM(C) AS S
FROM R
HAVING SUM(C) > 8 

S

44

SELECT A, SUM(C) AS S
FROM R
GROUP BY A, B
HAVING SUM(C) > 8 

A S

A1 20

A2 14

A2 8

A2 2



HAVING
• Used to filter groups based on the group properties 

(e.g., aggregate values, GROUP BY column values)
• SELECT … 
• FROM … 
• WHERE … 
• GROUP BY …
• HAVING 𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏;

• Compute FROM (×)
• Compute WHERE (𝜎)
• Compute GROUP BY: group rows according to the values of 

GROUP BY columns
• Compute HAVING (another 𝜎 over the groups)
• Compute SELECT (𝜋) for each group that passes HAVING

30

(1)
(2)

(3)
(4)

(5)



SELECT S.rating,  MIN (S.age) AS minage
FROM Sailors S
WHERE S.age >= 18
GROUP BY  S.rating
HAVING COUNT (*) > 1

sid sname rating age 
22 dustin 7 45.0 
29 brutus 1 33.0 
31 lubber 8 55.5 
32 andy 8 25.5 
58 rusty 10 35.0 
64 horatio 7 35.0 
71 zorba 10 16.0 
74 horatio 9 35.0 
85 art 3 25.5 
95 bob 3 63.5 
96 frodo 3 25.5 

 

 

Answer relation:

Sailors instance:

rating minage 
3 25.5 
7 35.0 
8 25.5 

 

 

31
Find age of the youngest sailor with age >= 18, for each rating with 
at least 2 such sailors.



Find age of the youngest sailor with age >= 18, for each rating with 
at least 2 such sailors.

rating age 
7 45.0 
1 33.0 
8 55.5 
8 25.5 
10 35.0 
7 35.0 
10 16.0 
9 35.0 
3 25.5 
3 63.5 
3 25.5 

 

 

32

SELECT  S.rating,  MIN 
(S.age) AS minage
FROM  Sailors S
WHERE  S.age >= 18
GROUP BY  S.rating
HAVING  COUNT (*) > 1

Step 1: Form the cross product: FROM clause
(some attributes are omitted for simplicity)



Find age of the youngest sailor with age >= 18, for each rating with 
at least 2 such sailors.

rating age 
7 45.0 
1 33.0 
8 55.5 
8 25.5 
10 35.0 
7 35.0 
10 16.0 
9 35.0 
3 25.5 
3 63.5 
3 25.5 

 

 

33

rating age 
7 45.0 
1 33.0 
8 55.5 
8 25.5 
10 35.0 
7 35.0 
10 16.0 
9 35.0 
3 25.5 
3 63.5 
3 25.5 

 

 

SELECT  S.rating,  MIN 
(S.age) AS minage
FROM  Sailors S
WHERE  S.age >= 18
GROUP BY  S.rating
HAVING  COUNT (*) > 1

Step 2: Apply WHERE clause



Find age of the youngest sailor with age >= 18, for each rating with 
at least 2 such sailors.

rating age 
7 45.0 
1 33.0 
8 55.5 
8 25.5 
10 35.0 
7 35.0 
10 16.0 
9 35.0 
3 25.5 
3 63.5 
3 25.5 

 

 

rating age 
1 33.0 
3 25.5 
3 63.5 
3 25.5 
7 45.0 
7 35.0 
8 55.5 
8 25.5 
9 35.0 
10 35.0 

 
 

34

rating age 
7 45.0 
1 33.0 
8 55.5 
8 25.5 
10 35.0 
7 35.0 
10 16.0 
9 35.0 
3 25.5 
3 63.5 
3 25.5 

 

 

SELECT  S.rating,  MIN 
(S.age) AS minage
FROM  Sailors S
WHERE  S.age >= 18
GROUP BY  S.rating
HAVING  COUNT (*) > 1

Step 3: Apply GROUP BY according to the listed attributes



Find age of the youngest sailor with age >= 18, for each rating with 
at least 2 such sailors.

rating age 
7 45.0 
1 33.0 
8 55.5 
8 25.5 
10 35.0 
7 35.0 
10 16.0 
9 35.0 
3 25.5 
3 63.5 
3 25.5 

 

 

rating age 
1 33.0 
3 25.5 
3 63.5 
3 25.5 
7 45.0 
7 35.0 
8 55.5 
8 25.5 
9 35.0 
10 35.0 

 
 

35

rating age 
7 45.0 
1 33.0 
8 55.5 
8 25.5 
10 35.0 
7 35.0 
10 16.0 
9 35.0 
3 25.5 
3 63.5 
3 25.5 

 

 

SELECT  S.rating,  MIN 
(S.age) AS minage
FROM  Sailors S
WHERE  S.age >= 18
GROUP BY  S.rating
HAVING  COUNT (*) > 
1

Step 4: Apply HAVING clause
The group-qualification is applied to eliminate some groups



Find age of the youngest sailor with age >= 18, for each rating with 
at least 2 such sailors.

rating age 
7 45.0 
1 33.0 
8 55.5 
8 25.5 
10 35.0 
7 35.0 
10 16.0 
9 35.0 
3 25.5 
3 63.5 
3 25.5 

 

 

rating minage 
3 25.5 
7 35.0 
8 25.5 

 

 

rating age 
1 33.0 
3 25.5 
3 63.5 
3 25.5 
7 45.0 
7 35.0 
8 55.5 
8 25.5 
9 35.0 
10 35.0 

 
 

36

rating age 
7 45.0 
1 33.0 
8 55.5 
8 25.5 
10 35.0 
7 35.0 
10 16.0 
9 35.0 
3 25.5 
3 63.5 
3 25.5 

 

 

SELECT  S.rating,  MIN 
(S.age) AS minage
FROM  Sailors S
WHERE  S.age >= 18
GROUP BY  S.rating
HAVING  COUNT (*) > 1

Step 5: Apply SELECT clause
Apply the aggregate operator
At the end, one tuple per group



HAVING examples

• List the average popularity for each age group with 
more than a hundred users

• Find average popularity for each age group over 10

37User(uid, name, age, pop)



HAVING examples

• List the average popularity for each age group with 
more than a hundred users
• SELECT age, AVG(pop)

FROM User
GROUP BY age
HAVING COUNT(*) > 100;
• Can be written using WHERE and table sub-queries

• Find average popularity for each age group over 10
• SELECT age, AVG(pop)

FROM User
GROUP BY age
HAVING age > 10;
• Can be written using WHERE without table subqueries

38User(uid, name, age, pop)



39

FNext: More sub-queries



Scalar subqueries

• A query that returns a single row can be used as a 
value in WHERE, SELECT, etc.
• Example: users at the same age as Bart
• SELECT *

FROM User
WHERE age = (SELECT age

FROM User
WHERE name = 'Bart');

• Runtime error if subquery returns more than one row
• Under what condition will this error never occur?

• What if the subquery returns no rows?
• The answer is treated as a special value NULL, and the 

comparison with NULL will fail (later)

40

What’s Bart’s age?



Scoping rule of subqueries

• To find out which table a column belongs to
• Start with the immediately surrounding query
• If not found, look in the one surrounding that; repeat if 

necessary

• Use table_name.column_name notation and AS
(renaming) to avoid confusion

41



• SELECT * FROM User u
WHERE EXISTS

(SELECT * FROM Member m
WHERE uid = u.uid
AND EXISTS

(SELECT * FROM Member
WHERE uid = u.uid
AND gid <> m.gid));

• What does this query return?
• Users who join at least two groups

Another example
42

User(uid, name, pop)
Member(uid, gid)
Group(gid, name)



Quantified subqueries: ALL & ANY

• A quantified subquery can be used syntactically as a 
value in a WHERE condition
• Universal quantification (for all):

… WHERE 𝑥 𝑜𝑝 ALL(𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦) …
• True iff for all 𝑡 in the result of 𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦, 𝑥 𝑜𝑝 𝑡

• Existential quantification (exists):
… WHERE 𝑥 𝑜𝑝 ANY(𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦) …
• True iff there exists some 𝑡 in 𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦 result such that 
𝑥 𝑜𝑝 𝑡

FBeware
• In common parlance, “any” and “all” seem to be synonyms
• In SQL, ANY really means “some”

43

Read this slide yourself
Example in class (next slide)



Examples of quantified subqueries

• Which users are the most popular?

• SELECT *
FROM User
WHERE pop >= ALL(SELECT pop FROM User);

• SELECT *
FROM User
WHERE NOT

(pop < ANY(SELECT pop FROM User);

FUse NOT to negate a condition

44

User(uid, name, pop)
Member(uid, gid)
Group(gid, name)



More ways to get the most popular

• Which users are the most popular?

• SELECT *
FROM User AS u
WHERE NOT EXISTS

(SELECT * FROM User
WHERE pop > u.pop);

• SELECT * FROM User
WHERE uid NOT IN

(SELECT u1.uid
FROM User AS u1, User AS u2
WHERE u1.pop < u2.pop);

45

User(uid, name, pop)
Member(uid, gid)
Group(gid, name)

Practice queries – check yourself



Views

• A view is like a “virtual” table
• Defined by a query, which describes how to compute 

the view contents on the fly
• DBMS stores the view definition query instead of view 

contents
• Can be used in queries just like a regular table

46



Creating and dropping views

• Example: members of Jessica’s Circle
• CREATE VIEW JessicaCircle AS

SELECT * FROM User
WHERE uid IN (SELECT uid FROM Member

WHERE gid = 'jes');
• Tables used in defining a view are called “base tables”

• User and Member above

• To drop a view
• DROP VIEW JessicaCircle;

47

Why use views?



FNext: incomplete information –
nulls, and outerjoins!

48



Incomplete information

• Example: User (uid, name, age, pop)
• Value unknown
• We do not know Nelson’s age

• Value not applicable
• Suppose pop is based on interactions with others on our 

social networking site
• Nelson is new to our site; what is his pop?

49

Ideas to handle unknown or missing attribute values?



Solution 1

• Dedicate a value from each domain (type)
• pop cannot be −1, so use −1 as a special value to 

indicate a missing or invalid pop
• Leads to incorrect answers if not careful

• SELECT AVG(pop) FROM User;
• Complicates applications

• SELECT AVG(pop) FROM User
WHERE pop <> -1;

• Perhaps the value is not 
as special as you think!
• Ever heard of the Y2K bug? 

“00” was used as a 
missing or invalid year value

50

http://www.90s411.com/images/y2k-cartoon.jpg



Solution 2

• A valid-bit for every column
• User (uid, 

name, name_is_valid,
age, age_is_valid,
pop, pop_is_valid)

• Complicates schema and queries
• SELECT AVG(pop) FROM User

WHERE pop_is_valid;

51User(uid, name, age, pop)



Solution 3

• Decompose the table; missing row = missing value
• UserName (uid, name)
UserAge (uid, age)
UserPop (uid, pop)
• UserID (uid)

• Conceptually the cleanest solution
• Still complicates schema and queries

• How to get all information about users in a table?
• Check yourself: Natural join doesn’t work – why?

52



SQL’s solution

• A special value NULL
• For every domain
• Special rules for dealing with NULL’s

• Example: User (uid, name, age, pop)
• 789, “Nelson”, NULL, NULL

53



Computing with NULL’s

• When we operate on a NULL and another value 
(including another NULL) using +, −, etc., the result 
is NULL

• Aggregate functions ignore NULL, except COUNT(*) 
(since it counts rows)

54



Three-valued logic

• TRUE = 1, FALSE = 0, UNKNOWN = 0.5
• 𝑥 AND 𝑦 = min(𝑥, 𝑦)
• 𝑥 OR 𝑦 = max(𝑥, 𝑦)
• NOT 𝑥 = 1 − 𝑥
• When we compare a NULL with another value 

(including another NULL) using =, >, etc., the result 
is UNKNOWN
• WHERE and HAVING clauses only select rows for 

output if the condition evaluates to TRUE
• UNKNOWN is not enough

55

END OF LECTURE 6 on 9/15



Unfortunate consequences

• SELECT AVG(pop) FROM User;
SELECT SUM(pop)/COUNT(*) FROM User;
• Not equivalent
• Although AVG(pop)=SUM(pop)/COUNT(pop) still

• SELECT * FROM User;
SELECT * FROM User WHERE pop = pop;
• Not equivalent

FBe careful: NULL breaks many equivalences

56

Are these equivalent?

User(uid, name, age, pop)

START OF LECTURE 7 on 9/20



Another problem

• Example: Who has NULL pop values?
• SELECT * FROM User WHERE pop = NULL;

• Does not work; never returns anything

• SQL introduced special, built-in predicates 
IS NULL and IS NOT NULL
• SELECT * FROM User WHERE pop IS NULL;

57



Announcements (09/20 - Tuesday)
• Discussion-4 on Friday 9/23:
• Tentative plan:

1. Evaluation of new iRex tool for debugging/tracing SQL queries using two HW-3 
problems (first 30-40 mins)

2. Making progress on these two HW-3 problems (TAs will be there to help)
• Like RATest, iRex is a research tool that helps trace SQL query answers and thus debug 

SQL queries – therefore, we need feedback from the intended users (i.e., you) about 
whether it serves it purpose and how to improve it.

• You will have a survey with two HW problems & some wrong solutions. You have to
find bugs (it also will help you practice for the midterm). For one problem you can use 
iRex (optional), for the other you won’t use iRex. You can give your consent to look at 
the log. It will be evaluated whether iRex helped you find bugs. You can also give 
written feedback whether iRex helped or if you have suggestions for improvement. 

• As usual, only attendance is graded, survey is not graded (but it is critical to 
understand whether/how the tool works and how to improve it), the two HW 
problems will be due along with the rest of the HW next week.

• Whether or not you consented, and whether or not you chose to use iRex will not 
have any impact on your hw scores or grades. I will only get to see the anonymized
responses. Please give your unbiased opinion about iRex!

• We appreciate your help in evaluating this and other tools to so that we can help you 
better in debugging queries!

58



Announcements (09/20 - Tuesday)
• Remember to email both Sudeepa & Alex if you need to reach out to us

• To ensure that you get a faster response
• All technical help, HW, Quiz etc. only on Ed – emails only for logistics
• Please avoid sending emails at the last minute if you need something - reach out early!

• Remember to read the website for all the rules & policy
• If some info is there, you might get a short response “pls see website”
• If a rule is stated, we will follow it, and would not have extensions or relaxation for 

any student – so no need to email instructor after/before the deadline. You should 
know that others who are emailing are not getting extensions outside the policy.

• If an extreme situation does not fall under the stated rules, you will be asked either to 
copy your Dean or to get Dean’s excuse – no undocumented extensions or excuses 
will be granted

• Being busy due to other courses, exams, assignments, interviews, travels etc. will not 
be an excuse (unless you have a Dean’s excuse) – all of you are busy!

• We strongly advise starting early and finishing well ahead of the deadline to take into 
account server/technical issues and to get help from course staff.

• Gradiance-2 (ERD) due on 9/21 Wednesday 10 pm
• No extensions/late days – plan ahead for occasional downtime & overload!

• HW-2 (ERD) due 9/22 Thursday 10 pm

59

END OF LECTURE 7 on 9/20



Outerjoin motivation

• Example: a master group membership list
• SELECT g.gid, g.name AS gname, 

u.uid, u.name AS uname
FROM Group g, Member m, User u
WHERE g.gid = m.gid AND m.uid = u.uid;
• What if a group is empty?
• It may be reasonable for the master list to include empty 

groups as well
• For these groups, uid and uname columns would be NULL

60User(uid, name, age, pop)
Member(uid, gid)



Outerjoin flavors and definitions

• A full outerjoin between R and S (denoted 𝑅⟗𝑆) 
includes all rows in the result of 𝑅 ⋈ 𝑆, plus
• “Dangling” 𝑅 rows (those that do not join with any 𝑆 rows) padded 

with NULL’s for 𝑆’s columns
• “Dangling” 𝑆 rows (those that do not join with any 𝑅 rows) padded 

with NULL’s for 𝑅’s columns

• A left outerjoin (𝑅⟕𝑆) includes rows in 𝑅 ⋈ 𝑆 plus 
dangling 𝑅 rows padded with NULL’s

• A right outerjoin (𝑅⟖𝑆) includes rows in 𝑅 ⋈ 𝑆
plus dangling 𝑆 rows padded with NULL’s

61



Outerjoin examples
62

gid name

abc Book Club

gov Student Government

dps Dead Putting Society

nuk United Nuclear Workers

uid gid

142 dps

123 gov

857 abc

857 gov

789 foo

Group

Member

gid name uid

abc Book Club 857

gov Student Government 123

gov Student Government 857

dps Dead Putting Society 142

nuk United Nuclear Workers NULL

Group⟕Member

gid name uid

abc Book Club 857

gov Student Government 123

gov Student Government 857

dps Dead Putting Society 142

foo NULL 789

Group⟖Member

gid name uid

abc Book Club 857

gov Student Government 123

gov Student Government 857

dps Dead Putting Society 142

nuk United Nuclear Workers NULL

foo NULL 789

Group⟗Member



Outerjoin syntax
• SELECT * FROM Group LEFT OUTER JOIN Member

ON Group.gid = Member.gid;
≈ 𝐺𝑟𝑜𝑢𝑝 ⟕

!"#$%.'()*+,-.,".'()
𝑀𝑒𝑚𝑏𝑒𝑟

• SELECT * FROM Group RIGHT OUTER JOIN Member
ON Group.gid = Member.gid;

≈ 𝐺𝑟𝑜𝑢𝑝 ⟖
!"#$%.'()*+,-.,".'()

𝑀𝑒𝑚𝑏𝑒𝑟

• SELECT * FROM Group FULL OUTER JOIN Member
ON Group.gid = Member.gid;

≈ 𝐺𝑟𝑜𝑢𝑝 ⟗
!"#$%.'()*+,-.,".'()

𝑀𝑒𝑚𝑏𝑒𝑟

☞A similar construct exists for regular (“inner”) joins:
• SELECT * FROM Group JOIN Member 

ON Group.gid = Member.gid;

☞These are theta joins rather than natural joins
• Return all columns in Group and Member

☞For natural joins, add keyword NATURAL; don’t use ON

63



Announcements (09/22 - Thursday)
• Discussion-4 on Friday 9/23:
• Tentative plan:

1. Evaluation of new iRex tool for debugging/tracing SQL queries using two HW-3 
problems (first 30-40 mins)

2. Making progress on these two HW-3 problems (TAs will be there to help)
• Like RATest, iRex is a research tool that helps trace SQL query answers and thus debug 

SQL queries – therefore, we need feedback from the intended users (i.e., you) about 
whether it serves it purpose and how to improve it.

• You will have a survey with two HW problems & some wrong solutions. You have to
find bugs (it also will help you practice for the midterm). For one problem you can use 
iRex (optional), for the other you won’t use iRex. You can give your consent to look at 
the log. It will be evaluated whether iRex helped you find bugs. You can also give 
written feedback whether iRex helped or if you have suggestions for improvement. 

• As usual, only attendance is graded, survey is not graded (but it is critical to 
understand whether/how the tool works and how to improve it), the two HW 
problems will be due along with the rest of the HW next week.

• Whether or not you consented, and whether or not you chose to use iRex will not 
have any impact on your hw scores or grades. I will only get to see the anonymized
responses. Please give your unbiased opinion about iRex!

• We appreciate your help in evaluating this and other tools to so that we can help you 
better in debugging queries!

64



Announcements (09/22 - Thursday)

• Check out announcement from Tuesday – email both 
Sudeepa/Alex & all rules on course webpage will be 
followed for assignments.

• HW-2 (ERD) due 9/22 Today Thursday 10 pm
• Gradiance-3 (SQL & NULL) due on 9/28 next 

Wednesday 10 pm
• No extensions/late days

• HW-3 (SQL) due 9/29 next Thursday 10 pm

65



FNext: how to create a table and 
insert/delete rows?

66



Creating and dropping tables

• CREATE TABLE table_name
(…, column_name column_type, …);
• DROP TABLE table_name;
• Examples

create table User(uid integer, name varchar(30),
age integer, pop float);

create table Group(gid char(10), name varchar(100));
create table Member(uid integer, gid char(10));
drop table Member;
drop table Group;
drop table User;
-- everything from -- to the end of line is ignored.
-- SQL is insensitive to white space.
-- SQL is insensitive to case (e.g., ...Group... is
-- equivalent to ...GROUP...).

67



INSERT

• Insert one row
• INSERT INTO Member VALUES (789, 'dps');

• User 789 joins Dead Putting Society

• Insert the result of a query
• INSERT INTO Member

(SELECT uid, 'dps' FROM User
WHERE uid NOT IN (SELECT uid

FROM Member
WHERE gid = 'dps'));

• Everybody joins Dead Putting Society!

68



DELETE

• Delete everything from a table
• DELETE FROM Member;

• Delete according to a WHERE condition
Example: User 789 leaves Dead Putting Society
• DELETE FROM Member

WHERE uid = 789 AND gid = 'dps';

Example: Users under age 18 must be removed 
from United Nuclear Workers
• DELETE FROM Member

WHERE uid IN (SELECT uid FROM User
WHERE age < 18)

AND gid = 'nuk';

69



UPDATE

• Example: User 142 changes name to “Barney”
• UPDATE User

SET name = 'Barney'
WHERE uid = 142;

• Example: We are all popular!
• UPDATE User

SET pop = (SELECT AVG(pop) FROM User);
• But won’t update of every row causes average pop to change?
FSubquery is always computed over the old table

70



FNext: constraints and triggers!

71



Constraints

• Restrictions on allowable data in a database
• In addition to the simple structure and type restrictions 

imposed by the table definitions
• Declared as part of the schema
• Enforced by the DBMS

• Why use constraints?
• Protect data integrity (catch errors)
• Tell the DBMS about the data (so it can optimize better)

72



Types of SQL constraints

• NOT NULL
• Key
• Referential integrity (foreign key)
• Tuple- and attribute-based CHECK’s
• (not covered for now -- General assertion)

73



NOT NULL constraint examples

• CREATE TABLE User
(uid INTEGER NOT NULL,
name VARCHAR(30) NOT NULL,
twitterid VARCHAR(15) NOT NULL,
age INTEGER,
pop FLOAT);

• CREATE TABLE Group
(gid CHAR(10) NOT NULL,
name VARCHAR(100) NOT NULL);

• CREATE TABLE Member
(uid INTEGER NOT NULL,
gid CHAR(10) NOT NULL);

74



Key declaration examples
• CREATE TABLE User

(uid INTEGER NOT NULL PRIMARY KEY,
name VARCHAR(30) NOT NULL,
twitterid VARCHAR(15) NOT NULL UNIQUE,
age INTEGER,
pop FLOAT);

• CREATE TABLE Group
(gid CHAR(10) NOT NULL PRIMARY KEY,
name VARCHAR(100) NOT NULL);

• CREATE TABLE Member
(uid INTEGER NOT NULL,
gid CHAR(10) NOT NULL,
PRIMARY KEY(uid, gid));

75

This form is required for multi-attribute keys

At most one primary key
Any number of unique



Referential integrity example

• Member.uid references User.uid
• If an uid appears in Member, it must appear in User

• Member.gid references Group.gid
• If a gid appears in Member, it must appear in Group

FThat is, no “dangling pointers”

76

uid name …

142 Bart …

123 Milhouse …

857 Lisa …

456 Ralph …

789 Nelson …

… … …

gid name

abc …

gov …

dps …

… …

uid gid

142 dps

123 gov

857 abc

857 gov

456 abc

456 gov

… …

User GroupMember



Referential integrity in SQL

• Referenced column(s) must be PRIMARY KEY
• Referencing column(s) form a FOREIGN KEY
• Example
• CREATE TABLE Member

(uid INTEGER NOT NULL
REFERENCES User(uid),

gid CHAR(10) NOT NULL,
PRIMARY KEY(uid, gid),
FOREIGN KEY (gid) REFERENCES Group(gid));

77

This form is useful for multi-attribute foreign keys



Enforcing referential integrity 

Example: Member.uid references User.uid
• Insert or update a Member row so it refers to a non-

existent uid?
• Reject

• Delete or update a User row whose uid is 
referenced by some Member row?
• Reject
• Cascade: ripple changes to all referring rows
• Set NULL: set all references to NULL
• All three options can be specified in SQL

78



Tuple- and attribute-based CHECK’s
79

• Associated with a single table
• Only checked when a tuple/attribute is inserted/updated

• Reject if condition evaluates to FALSE
• TRUE and UNKNOWN are fine 

• (unlike only TRUE in WHERE conditions!)

• Examples:
• CREATE TABLE User(... 

age INTEGER CHECK(age IS NULL OR age > 0),
...);

• CREATE TABLE Member
(uid INTEGER NOT NULL,
CHECK(uid IN (SELECT uid FROM User)),
...);

Is it a referential integrity constraint?
Not quite; not checked when User is modified



“Active” data

• Constraint enforcement: When an operation 
violates a constraint, abort the operation or try to 
“fix” data
• Example: enforcing referential integrity constraints
• Generalize to arbitrary constraints?

• Data monitoring: When something happens to the 
data, automatically execute some action. 
Examples?
• Example: When price rises above $20 per share, sell
• Example: When enrollment is at the limit and more 

students try to register, email the instructor

80



Triggers

• A trigger is an event-condition-action (ECA) rule
• When event occurs, test condition; if condition is 

satisfied, execute action

• Example:
• Event: some user’s popularity is updated
• Condition: the user is a member of 

“Jessica’s Circle,” and pop drops below 0.5
• Action: kick that user out of Jessica’s Circle

81

http://pt.simpsons.wikia.com/wiki/Arquivo:Jessica_lovejoy.jpg

Jessica is picky about her group members!



Trigger example (Row Level)
CREATE TRIGGER PickyJessica
AFTER UPDATE OF pop ON User
REFERENCING NEW ROW AS newUser
FOR EACH ROW
WHEN (newUser.pop < 0.5)
AND (newUser.uid IN (SELECT uid

FROM Member
WHERE gid = 'jes')) 

DELETE FROM Member
WHERE uid = newUser.uid AND gid = 'jes';

82

Event

Condition

Action



Trigger options

• Possible events include:
• INSERT ON table
• DELETE ON table
• UPDATE [OF column] ON table

• Granularity—trigger can be activated:
• FOR EACH ROW modified
• FOR EACH STATEMENT that performs modification

• Timing—action can be executed:
• AFTER or BEFORE the triggering event
• INSTEAD OF the triggering event on views (more later)

83

CREATE TRIGGER PickyJessica
AFTER UPDATE OF pop ON User
REFERENCING NEW ROW AS newUser
FOR EACH ROW
WHEN (newUser.pop < 0.5)
AND (newUser.uid IN (SELECT uid

FROM Member
WHERE gid = 'jes')) 

DELETE FROM Member
WHERE uid = newUser.uid AND gid = 'jes';

Event

Condition

Action



Transition variables
• OLD ROW: the modified row before the triggering event
• NEW ROW: the modified row after the triggering event
• OLD TABLE: a hypothetical read-only table containing all 

rows to be modified before the triggering event
• NEW TABLE: a hypothetical table containing all modified 

rows after the triggering event

FNot all of them make sense all the time, e.g.
• AFTER INSERT statement-level triggers

• Can use only NEW TABLE
• AFTER UPDATE row-level triggers

• Can use only OLD ROW and NEW ROW
• BEFORE DELETE row-level triggers

• Can use only OLD ROW
• etc.

84



Statement-level trigger example

CREATE TRIGGER PickyJessica
AFTER UPDATE OF pop ON User
REFERENCING NEW TABLE AS newUsers
FOR EACH STATEMENT
DELETE FROM Member
WHERE gid = 'jes'
AND uid IN (SELECT uid

FROM newUsers
WHERE pop < 0.5);

85

Event

Action

Check the example yourself



Condition

Event

Action

BEFORE trigger example
• Never allow age to decrease
CREATE TRIGGER NoFountainOfYouth
BEFORE UPDATE OF age ON User
REFERENCING OLD ROW AS o, 

NEW ROW AS n
FOR EACH ROW
WHEN (n.age < o.age)
SET n.age = o.age;
FBEFORE triggers are often used to 

“condition” data
FAnother option is to raise an error in the trigger 

body to abort the transaction that caused the 
trigger to fire

86Check the example yourself



Statement- vs. row-level triggers

Why are both needed?
• Certain triggers are only possible at statement level
• If the number of users inserted by this statement 

exceeds 100 and their average age is below 13, then …

• Simple row-level triggers are easier to implement
• Statement-level triggers require significant amount of 

state to be maintained in OLD TABLE and NEW TABLE
• However, a row-level trigger gets fired for each row, so 

complex row-level triggers may be less efficient for 
statements that modify many rows

87



SQL features covered so far

• Query
• Modification
• Views
• Constraints
• Triggers

• Still a lot more features of SQL not covered
• Learn some of them yourself as you play with SQL 

queries!

88


