
Notes on
SQL Programming and 

Injection Attack
Introduction to Databases

CompSci 316 Fall 2022



• You have been using SQL programming for your 
class projects
• This is to discuss “SQL Injection Attack” and 

“sanitizing inputs” briefly that your code should 
adhere to
• Some systems automatically take care of such attacks
• We will check whether/how you handled SQL Injection 

Attack

2
Will not be asked in the final exam,
But important for your project



Working with SQL through an API

• E.g.: Python psycopg2, JDBC, ODBC (C/C++/VB)
• All based on the SQL/CLI (Call-Level Interface) standard

• The application program sends SQL commands to 
the DBMS at runtime
• Responses/results are converted to objects in the 

application program

3



Example API: Python psycopg2
import psycopg2

conn = psycopg2.connect(dbname='beers')

cur = conn.cursor()

# list all drinkers:

cur.execute('SELECT * FROM Drinker')

for drinker, address in cur:

print(drinker + ' lives at ' + address)

# print menu for bars whose name contains “a”:

cur.execute('SELECT * FROM Serves WHERE bar LIKE %s', ('%a%',))

for bar, beer, price in cur:

print('{} serves {} at ${:,.2f}'.format(bar, beer, price))

cur.close()

conn.close()

4

You can iterate over cur
one tuple at a time

Placeholder for 
query parameter

Tuple of parameter values, 
one for each %s

(note that the trailing “,” is needed when 
the tuple contains only one value)



More psycopg2 examples
# “commit” each change immediately—need to set this option just once at the start of 
the session
conn.set_session(autocommit=True)
# ...

bar = input('Enter the bar to update: ').strip()

beer = input('Enter the beer to update: ').strip()

price = float(input('Enter the new price: '))

try:

cur.execute('''
UPDATE Serves
SET price    = %s
WHERE bar = %s AND beer = %s''', (price, bar, beer))

if cur.rowcount != 1:

print('{} row(s) updated: correct bar/beer?'\
.format(cur.rowcount))

except Exception as e:

print(e)

5

# of tuples modified

Exceptions can be thrown 
(e.g., if positive-price constraint is violated)



Prepared statements: motivation
while True:

# Input bar, beer, price…

cur.execute('''
UPDATE Serves
SET price = %s
WHERE bar = %s AND beer = %s''', (price, bar, beer))

# Check result...

• Every time we send an SQL string to the DBMS, it 
must perform parsing, semantic analysis, 
optimization, compilation, and finally execution
• A typical application issues many queries with a 

small number of patterns (with different parameter 
values)
• Can we reduce this overhead?

6



Prepared statements: example
cur.execute('''                 # Prepare once (in SQL).
PREPARE update_price AS          # Name the prepared plan,
UPDATE Serves
SET price = $1                   # and note the $1, $2, … notation for
WHERE bar = $2 AND beer = $3''') # parameter placeholders.
while True:

# Input bar, beer, price…
cur.execute('EXECUTE update_price(%s, %s, %s)',\ # Execute many times.

(price, bar, beer))
# Note the switch back to %s for parameter placeholders.

# Check result...

• The DBMS performs parsing, semantic analysis, 
optimization, and compilation only once, when it 
“prepares” the statement
• At execution time, the DBMS only needs to check 

parameter types and validate the compiled plan
• Most other API’s have better support for prepared 

statements than psycopg2
• E.g., they would provide a cur.prepare() method

7

See /opt/dbcourse/examples/psycopg2/ 
on your VM for a complete code example



“Exploits of a mom”

• The school probably had something like:
cur.execute("SELECT * FROM Students " + \

"WHERE (name = '" + name + "')")

where name is a string input by user
• Called an SQL injection attack

8

http://xkcd.com/327/



Guarding against SQL injection

• Escape certain characters in a user input string, to 
ensure that it remains a single string
• E.g., ', which would terminate a string in SQL, must be 

replaced by '' (two single quotes in a row) within the 
input string

• Luckily, most API’s provide ways to “sanitize” input 
automatically (if you use them properly)
• E.g., pass parameter values in psycopg2 through %s’s

9



If one fails to learn the lesson…
10

… P.S. To Ashley Madison’s Development Team: 
You should be embarrased [sic] for your train 
wreck of a database (and obviously security), not 
sanitizing your phone numbers to your database 
is completely amateur, it’s as if the entire site was 
made by Comp Sci 1XX students.

— Creators of CheckAshleyMadison.com
https://en.wikipedia.org/wiki/Ashley_Madison
http://www.washingtonpost.com/news/the-intersect/wp/2015/08/19/how-to-see-if-you-or-your-spouse-appear-in-the-ashley-madison-leak/


