Relational Database Design Theory

Introduction to Databases
CompSci 316 Fall 2022
Announcements (09/27 - Tuesday)

• Gradiance-3 (SQL & NULL) due on 9/28 next Wednesday 10 pm
 • No extensions/late days
• HW-3 (SQL) due 9/29 next Thursday 10 pm
• Midterm includes everything up to & including Thursday 9/29’s lecture
• Midterm: open book and notes, no collaboration, no electronic devices
• Discussion-5 9/30: Midterm practice problems
 • See “Midterm Review Topics” thread on Ed, add there if you want us to review/practice any topic
• Practice midterm and practice gradiance (not graded) will be released soon
Motivation

• Why is UserGroup \((uid, uname, gid)\) a bad design?
 • It has redundancy—user name is recorded multiple times, once for each group that a user belongs to
 • Leads to update, insertion, deletion anomalies

• Wouldn’t it be nice to have a systematic approach to detecting and removing redundancy in designs?
 • Dependencies, decompositions, and normal forms

<table>
<thead>
<tr>
<th>uid</th>
<th>uname</th>
<th>gid</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>dps</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>gov</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>abc</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>gov</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>abc</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>gov</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Functional dependencies

- A functional dependency (FD) has the form $X \rightarrow Y$, where X and Y are sets of attributes in a relation R
- $X \rightarrow Y$ means that whenever two tuples in R agree on all the attributes in X, they must also agree on all attributes in Y
FD examples

Address (street_address, city, state, zip)
• street_address, city, state → zip
• zip → city, state
• zip, state → zip?
 • This is a trivial FD
 • Trivial FD: LHS ⊇ RHS
• zip → state, zip?
 • This is non-trivial, but not completely non-trivial
 • Completely non-trivial FD: LHS ∩ RHS = ∅
Redefining “keys” using FD’s

A set of attributes K is a **key** for a relation R if

- $K \rightarrow$ all (other) attributes of R
 - That is, K is a “**super key**”

- No proper subset of K satisfies the above condition
 - That is, K is **minimal**
Reasoning with FD’s

Given a relation R and a set of FD’s \mathcal{F}

- **Does another FD follow from \mathcal{F}?**
 - Are some of the FD’s in \mathcal{F} redundant (i.e., they follow from the others)?

- **Is K a key of R?**
 - What are all the keys of R?
Attribute closure

• Given R, a set of FD’s \mathcal{F} that hold in R, and a set of attributes Z in R:
 The closure of Z (denoted Z^+) with respect to \mathcal{F} is the set of all attributes $\{A_1, A_2, \ldots\}$ functionally determined by Z (that is, $Z \rightarrow A_1A_2 \ldots$)

• Algorithm for computing the closure
 • Start with closure $= Z$
 • If $X \rightarrow Y$ is in \mathcal{F} and X is already in the closure, then also add Y to the closure
 • Repeat until no new attributes can be added

Example
On board
Using next slide
A more complex example

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)

Assume that there is a 1-1 correspondence between our users and Twitter accounts

• uid → uname, twitterid
• twitterid → uid
• uid, gid → fromDate

Not a good design, and we will see why shortly
Example of computing closure

- \{gid, twitterid\}^+ = ?

- twitterid → uid
 - Add uid
 - Closure grows to \{gid, twitterid, uid\}

- uid → uname, twitterid
 - Add uname, twitterid
 - Closure grows to \{gid, twitterid, uid, uname\}

- uid, gid → fromDate
 - Add fromDate
 - Closure is now all attributes in UserJoinsGroup
Using attribute closure

Given a relation R and set of FD’s \mathcal{F}

• Does another FD $X \rightarrow Y$ follow from \mathcal{F}?
 • Compute X^+ with respect to \mathcal{F}
 • If $Y \subseteq X^+$, then $X \rightarrow Y$ follows from \mathcal{F}

• Is K a key of R?
 • Compute K^+ with respect to \mathcal{F}
 • If K^+ contains all the attributes of R, K is a super key
 • Still need to verify that K is minimal (how?)
Rules of FD’s

• Armstrong’s axioms
 • Reflexivity: If $Y \subseteq X$, then $X \rightarrow Y$
 • Augmentation: If $X \rightarrow Y$, then $XZ \rightarrow YZ$ for any Z
 • Transitivity: If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$

• Rules derived from axioms
 • Splitting: If $X \rightarrow YZ$, then $X \rightarrow Y$ and $X \rightarrow Z$
 • Combining: If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$

Using these rules, you can prove or disprove an FD given a set of FDs
(Problems with) Non-key FD’s

• Consider a non-trivial FD $X \rightarrow Y$ where X is not a super key
 • Since X is not a super key, there are some attributes (say Z) that are not functionally determined by X

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>b</td>
<td>c_1</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>b</td>
<td>c_2</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

That b is associated with a is recorded multiple times: redundancy, update/insertion/deletion anomaly
Example of redundancy

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)

- $uid \rightarrow uname, twitterid$

(... plus other FD’s)

<table>
<thead>
<tr>
<th>uid</th>
<th>uname</th>
<th>twitterid</th>
<th>gid</th>
<th>fromDate</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>@BartJSimpson</td>
<td>dps</td>
<td>1987-04-19</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>@MilhouseVan_</td>
<td>gov</td>
<td>1989-12-17</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>@lisasimpson</td>
<td>abc</td>
<td>1987-04-19</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>@lisasimpson</td>
<td>gov</td>
<td>1988-09-01</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>@ralphwiggum</td>
<td>abc</td>
<td>1991-04-25</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>@ralphwiggum</td>
<td>gov</td>
<td>1992-09-01</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

What are the problems? How do we fix them?
Decomposition

<table>
<thead>
<tr>
<th>uid</th>
<th>uname</th>
<th>twitterid</th>
<th>gid</th>
<th>fromDate</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>@BartJSimpson</td>
<td>dps</td>
<td>1987-04-19</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>@MilhouseVan_</td>
<td>gov</td>
<td>1989-12-17</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>@lisasimpson</td>
<td>abc</td>
<td>1987-04-19</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>@lisasimpson</td>
<td>gov</td>
<td>1988-09-01</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>@ralphwiggum</td>
<td>abc</td>
<td>1991-04-25</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>@ralphwiggum</td>
<td>gov</td>
<td>1992-09-01</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- Eliminates redundancy
- To get back to the original relation: ⚫
Unnecessary decomposition

<table>
<thead>
<tr>
<th>uid</th>
<th>uname</th>
<th>twitterid</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>@BartJSimpson</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>@MilhouseVan_</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>@lisasimpson</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>@ralphwiggum</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Fine: join returns the original relation
- Unnecessary: no redundancy is removed; schema is more complicated (and uid is stored twice!)
Bad decomposition

<table>
<thead>
<tr>
<th>uid</th>
<th>gid</th>
<th>fromDate</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>dps</td>
<td>1987-04-19</td>
</tr>
<tr>
<td>123</td>
<td>gov</td>
<td>1989-12-17</td>
</tr>
<tr>
<td>857</td>
<td>abc</td>
<td>1987-04-19</td>
</tr>
<tr>
<td>857</td>
<td>gov</td>
<td>1988-09-01</td>
</tr>
<tr>
<td>456</td>
<td>abc</td>
<td>1991-04-25</td>
</tr>
<tr>
<td>456</td>
<td>gov</td>
<td>1992-09-01</td>
</tr>
</tbody>
</table>

- Association between gid and fromDate is lost
- Join returns more rows than the original relation
Lossless join decomposition

• Decompose relation R into relations S and T
 • $\text{attrs}(R) = \text{attrs}(S) \cup \text{attrs}(T)$
 • $S = \pi_{\text{attrs}(S)}(R)$
 • $T = \pi_{\text{attrs}(T)}(R)$

• The decomposition is a **lossless join decomposition** if, given known constraints such as FD’s, we can guarantee that $R = S \bowtie T$

• Any decomposition gives $R \subseteq S \bowtie T$ (why?)
 • A **lossy** decomposition is one with $R \subset S \bowtie T$
Loss? But I got more rows!

• “Loss” refers not to the loss of tuples, but to the loss of information
 • Or, the ability to distinguish different original relations

No way to tell which is the original relation
Examples: Lossy and Lossless Decomposition

Lossless decomposition

- $X \times Y$
 - $a \times b$
 - $a1 \times b$

- $X \times Z$
 - $a \times c_1$
 - $a1 \times c_2$

Lossy decomposition

- $Y \times Z$
 - $b \times c_1$
 - $b \times c_2$

Check yourself!
if in one of the two new relations, the common join attributes is a superkey, then lossless
Questions about decomposition

• When to decompose

• How to come up with a correct decomposition (i.e., lossless join decomposition)
An answer: BCNF

• A relation R is in Boyce-Codd Normal Form if
 • For every non-trivial FD $X \rightarrow Y$ in R, X is a super key
 • That is, all FDs follow from “key \rightarrow other attributes”

• When to decompose
 • As long as some relation is not in BCNF

• How to come up with a correct decomposition
 • Always decompose on a BCNF violation (details next)
 \therefore Then it is guaranteed to be a lossless join decomposition!
BCNF decomposition algorithm

• Find a BCNF violation
 • That is, a non-trivial FD \(X \rightarrow Y \) in \(R \) where \(X \) is not a super key of \(R \)

• Decompose \(R \) into \(R_1 \) and \(R_2 \), where
 • \(R_1 \) has attributes \(X \cup Y \)
 • \(R_2 \) has attributes \(X \cup Z \), where \(Z \) contains all attributes of \(R \) that are in neither \(X \) nor \(Y \)

• Repeat until all relations are in BCNF
BCNF decomposition example

UserJointsGroup (uid, uname, twitterid, gid, fromDate)

BCNF violation: uid → uname, twitterid

User (uid, uname, twitterid)

uid → uname, twitterid
twitterid → uid

BCNF

Member (uid, gid, fromDate)

uid, gid → fromDate

BCNF
Another example

UserJoinsGroup \((uid, \text{uname}, \text{twitterid}, gid, \text{fromDate}) \)

BCNF violation: \(\text{twitterid} \rightarrow uid \)

UserId \((\text{twitterid}, uid) \)

UserJoinsGroup' \((\text{twitterid}, \text{uname}, gid, \text{fromDate}) \)

BCNF violation: \(\text{twitterid} \rightarrow \text{uname} \)

UserName \((\text{twitterid}, \text{uname}) \)

Member \((\text{twitterid}, gid, \text{fromDate}) \)

BCNF
Example in Class
Why is BCNF decomposition lossless

Given non-trivial $X \rightarrow Y$ in R where X is not a super key of R, need to prove:

- Anything we project always comes back in the join:

$$R \subseteq \pi_{XY}(R) \bowtie \pi_{XZ}(R)$$

- Sure; and it doesn’t depend on the FD

- Check and prove yourself!

- Anything that comes back in the join must be in the original relation:

$$R \supseteq \pi_{XY}(R) \bowtie \pi_{XZ}(R)$$

- Proof will make use of the fact that $X \rightarrow Y$
Another proof technique: “Chase”

• In $R(A, B, C, D)$, does $A \rightarrow B$ and $B \rightarrow C$ imply that $A \rightarrow C$?

<table>
<thead>
<tr>
<th>Have:</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b_1</td>
<td>c_1</td>
<td>d_1</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>b_2</td>
<td>c_2</td>
<td>d_2</td>
<td></td>
</tr>
</tbody>
</table>

| Need: | $c_1 = c_2$ |

Alternative: compute closure
Another proof technique: “Chase”

• In \(R(A, B, C, D) \), does \(A \rightarrow B \) and \(B \rightarrow C \) imply that \(A \rightarrow C \)?

Have:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>(b_1)</td>
<td>(c_1)</td>
<td>(d_1)</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>(b_2)</td>
<td>(c_2)</td>
<td>(d_2)</td>
<td></td>
</tr>
</tbody>
</table>

Need:

\[c_1 = c_2 \]

\[A \rightarrow B \quad b_1 = b_2 \]
Another proof technique: “Chase”

• In \(R(A, B, C, D) \), does \(A \rightarrow B \) and \(B \rightarrow C \) imply that \(A \rightarrow C \)?

<table>
<thead>
<tr>
<th>Have:</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b₁</td>
<td>c₁</td>
<td>d₁</td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>b₂</td>
<td>c₂</td>
<td>d₂</td>
</tr>
</tbody>
</table>

\[A \rightarrow B \]

\[b₁ = b₂ \]

<table>
<thead>
<tr>
<th>Need:</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b₁</td>
<td>c₁</td>
<td>d₁</td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>b₁</td>
<td>c₂</td>
<td>d₂</td>
</tr>
</tbody>
</table>

\[c₁ = c₂ \]
Another proof technique: “Chase”

In $R(A, B, C, D)$, does $A \rightarrow B$ and $B \rightarrow C$ imply that $A \rightarrow C$?

Have:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b_1</td>
<td>c_1</td>
<td>d_1</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>b_2</td>
<td>c_2</td>
<td>d_2</td>
<td></td>
</tr>
</tbody>
</table>

Need:

$c_1 = c_2$

$A \rightarrow B$

$b_1 = b_2$

$B \rightarrow C$

$c_1 = c_2$
Another proof technique: “Chase”

• In $R(A, B, C, D)$, does $A \rightarrow B$ and $B \rightarrow C$ imply that $A \rightarrow C$?

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b_1</td>
<td>c_1</td>
<td>d_1</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>b_2</td>
<td>c_2</td>
<td>d_2</td>
<td></td>
</tr>
</tbody>
</table>

Have:

$A \rightarrow B$

$b_1 = b_2$

$B \rightarrow C$

$c_1 = c_2$

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b_1</td>
<td>c_1</td>
<td>d_1</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>b_1</td>
<td>c_2</td>
<td>d_2</td>
<td></td>
</tr>
</tbody>
</table>

Need:

$c_1 = c_2$ ☑️

Proved!!
Counterexample by chase

• In $R(A, B, C, D)$, does $A \rightarrow C$ and $CD \rightarrow B$ imply that $A \rightarrow B$?

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Have:</td>
<td>a</td>
<td>b_1</td>
<td>c_1</td>
<td>d_1</td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>b_2</td>
<td>c_2</td>
<td>d_2</td>
</tr>
</tbody>
</table>

Need: $b_1 = b_2$
Counterexample by chase

- In $R(A, B, C, D)$, does $A \rightarrow C$ and $CD \rightarrow B$ imply that $A \rightarrow B$?

<table>
<thead>
<tr>
<th>Have:</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b_1</td>
<td>c_1</td>
<td>d_1</td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>b_2</td>
<td>c_2</td>
<td>d_2</td>
</tr>
</tbody>
</table>

$A \rightarrow C$
$c_1 = c_2$

Need: $b_1 = b_2$
Counterexample by chase

• In $R(A, B, C, D)$, does $A \rightarrow C$ and $CD \rightarrow B$ imply that $A \rightarrow B$?

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>b_1</td>
<td>c_1</td>
<td>d_1</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>b_2</td>
<td>c_2</td>
<td>d_2</td>
</tr>
</tbody>
</table>

- $A \rightarrow C$
 $c_1 = c_2$

Cannot apply anything else

\[b_1 = b_2 \]
Counterexample by chase

• In $R(A, B, C, D)$, does $A \rightarrow C$ and $CD \rightarrow B$ imply that $A \rightarrow B$?

Have:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b₁</td>
<td>c₁</td>
<td>d₁</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>b₂</td>
<td>c₂</td>
<td>d₂</td>
<td></td>
</tr>
</tbody>
</table>

Need:

$b₁ = b₂ \n$

$A \rightarrow C \quad c₁ = c₂$

Cannot apply anything else

Got our counterexample!

Satisfies $A \rightarrow C$ and $CD \rightarrow B$ BUT NOT $A \rightarrow B$

To “disprove” something – show a counterexample
Recap

- Functional dependencies: a generalization of the key concept
- Non-key functional dependencies: a source of redundancy
- BCNF decomposition: a method for removing redundancies
 - BNCF decomposition is a lossless join decomposition
- BCNF: schema in this normal form has no redundancy due to FD’s
Summary

• Philosophy behind BCNF: Data should depend on the key, the whole key, and nothing but the key!
 • You could have multiple keys though

• Other normal forms
 • 4NF: Talks about “multi-valued dependencies”, algo similar to BCNF – may cover later in the course
 • 3NF: More relaxed than BCNF; will not remove redundancy if doing so makes FDs harder to enforce
 • 2NF: Slightly more relaxed than 3NF
 • 1NF: All column values must be atomic
Announcements (09/29 - Thursday)

• HW-3 (SQL) due today 9/29 10 pm
• Midterm includes everything up to & including today’s = Thursday 9/29’s lecture
• Midterm: open book and notes (see Ed post what is allowed and what is not), no collaboration, no electronic devices
• You may want to practice writing SQL or RA queries on paper without the help of postgres, pgweb, RATest etc.
• Discussion-5 9/30: Midterm practice problems
• Practice midterm, some practice gradiance posted (a few more on BCNF on gradiance coming) (not graded)
• If you have accommodation, make sure that you have heard from Alex, otherwise ping him ASAP