
Index
Introduction to Databases

CompSci 316 Fall 2022

Announcements (Thu. Oct 13)
• Project, project, & project!

• MS-2 due today (10/13)
• HW4 due 10/20 - group submission per project team
• DS7 – team work for project & HW4

2

Recall the Disk-Main Memory diagram!
3

Dirty block

Disk read

Disk write

Topics

• Index

• Dense vs. Sparse
• Clustered vs. unclustered
• Primary vs. secondary
• Tree-based vs. Hash-index

4

Related

What are indexes for?

• Given a value, locate the record(s) with this value
SELECT * FROM R WHERE A = value;
SELECT * FROM R, S WHERE R.A = S.B;

• Find data by other search criteria, e.g.
• Range search

SELECT * FROM R WHERE A > value;
• Keyword search

5

database indexing Search

Focus
of this
lecture

Dense and sparse indexes
• Dense: one index entry for each search key value

• One entry may “point” to multiple records (e.g., two users named Jessica)
• Sparse: one index entry for each block

• Records must be clustered according to the search key

6

Bart

Jessica

Lisa

Martin

Milhouse

Nelson

Ralph

Sherri

Terri

Windel

123

456

857

Sparse index
on uid

Dense index
on name

123 Milhouse 10 0.2

142 Bart 10 0.9

279 Jessica 10 0.9

345 Martin 8 2.3

456 Ralph 8 0.3

512 Nelson 10 0.4

679 Sherri 10 0.6

697 Terri 10 0.6

857 Lisa 8 0.7

912 Windel 8 0.5

997 Jessica 8 0.5

When are these
possible?

Comparison?

Dense versus sparse indexes

• Index size
• ??

• Requirement on records
• ??

• Lookup
• ??

• Update
• ??

7

Bart

Jessica

Lisa

Martin

Milhouse

Nelson

Ralph

Sherri

Terri

Windel

123

456

857

Sparse index
on uid

Dense index
on name

123 Milhouse 10 0.2

142 Bart 10 0.9

279 Jessica 10 0.9

345 Martin 8 2.3

456 Ralph 8 0.3

512 Nelson 10 0.4

679 Sherri 10 0.6

697 Terri 10 0.6

857 Lisa 8 0.7

912 Windel 8 0.5

997 Jessica 8 0.5

Dense versus sparse indexes

• Index size
• Sparse index is smaller

• Requirement on records
• Records must be clustered for sparse index

• Lookup
• Sparse index is smaller and may fit in memory
• Dense index can directly tell if a record exists

• Update
• May be easier for sparse index (less movement for

updates)

8

Primary and secondary indexes

• Primary index
• Created for the primary key of a table
• Records are usually clustered by the primary key
• Can be sparse

• Secondary index
• Usually dense

• SQL
• PRIMARY KEY declaration automatically creates a primary

index, UNIQUE key automatically creates a secondary
index
• Additional secondary index can be created on non-key

attribute(s):
CREATE INDEX UserPopIndex ON User(pop);

9

What if the index is too big as well?
10

Bart

Jessica

Lisa

Martin

Milhouse

Nelson

Ralph

Sherri

Terri

Windel

123

456

857

Sparse index
on uid

Dense index
on name

123 Milhouse 10 0.2

142 Bart 10 0.9

279 Jessica 10 0.9

345 Martin 8 2.3

456 Ralph 8 0.3

512 Nelson 10 0.4

679 Sherri 10 0.6

697 Terri 10 0.6

857 Lisa 8 0.7

912 Windel 8 0.5

997 Jessica 8 0.5

What if the index is too big as well?
11

Bart

Jessica

Lisa

Martin

Milhouse

Nelson

Ralph

Sherri

Terri

Windel

123

456

857

Sparse index
on uid

Dense index
on name

123 Milhouse 10 0.2

142 Bart 10 0.9

279 Jessica 10 0.9

345 Martin 8 2.3

456 Ralph 8 0.3

512 Nelson 10 0.4

679 Sherri 10 0.6

697 Terri 10 0.6

857 Lisa 8 0.7

912 Windel 8 0.5

997 Jessica 8 0.5

Put a another (sparse) index on top of that!

Binary Search Tree
12

50

30 70

25 47 59 84

Each node can hold
Exactly one entry

Leaves are sorted

Height balanced:
All leaves are at the
Same level
(complete binary tree)

< 50 >= 50

< 30 >= 30 < 70 >= 70

End of Lecture 10/6
(some earlier slides were skipped
That will be covered next weeks)

Remember Terminology
• Index search key (key): k
• Used to search a record

• Data entry : k*
• Pointed to by k
• Contains record id(s)

• (-) another level of indirection (+) small and fixed length entries
• or record itself

• (-) can be large, cannot be stored in memory, (+) saves some
disk access

• Records or data
• Actual tuples
• Pointed to by record ids

13

INDEX
does this

On disk

B-tree: Generalizing Binary Search Trees
14

50

30 ??

25 44 ?? ??

42 ??

27 46 ?? ??35 39 ????

Each node
can hold multiple entries,
has fixed max size
and is sorted

Each node does not have
To be full
#pointers = #entries + 1

Height balanced

Leaves are sorted

< 50 >= 50

< 30 >= 30
< 42

>= 42

?? =
Fill in
the
class

B+-tree: Data only at leaves
15

50

30 59

25 44 ?? ??

42 ??

27 46 59 ??35 39 ????

Index Nodes
Containing
Index entries

Data entries: Pointers to actual tuples

< 50 >= 50

< 30 >= 30
< 42

>= 42 Data values can be repeated as index

Leaves are linked

B+-tree balancing properties

• Height constraint: all leaves at the same lowest level
• Fan-out constraint: all nodes at least half full

(except root)

Max # Max # Min # Min #
pointers keys active pointers keys

Non-leaf 𝑓 𝑓 − 1 ⌈𝑓/2⌉ ⌈𝑓/2⌉ − 1
Root 𝑓 𝑓 − 1 2 1
Leaf 𝑓 𝑓 − 1 ⌊𝑓/2⌋ ⌊𝑓/2⌋

16

Check yourself

B+-tree: Closer Look

• A hierarchy of nodes with intervals
• Balanced (more or less): good performance guarantee
• Disk-based: one node per block; large fan-out

17
3 5 11 30 35 10

0
10

1
11

0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

30

10
0

12
0

15
0

18
0

Max fan-out: 4

to keys
100 ≤ 𝑘

to keys
𝑘 < 100

Sample B+-tree nodes
18

Max fan-out: 4

12
0

15
0

18
0

to keys
100 ≤ 𝑘 < 120

to keys
120 ≤ 𝑘 < 150

to keys
150 ≤ 𝑘 < 180

to keys
180 ≤ 𝑘

Non-leaf
12

0
13

0

to records with these 𝑘 values;
or, store records directly in leaves (pros/cons?)

to next leaf node in sequenceLeaf

to keys
100 ≤ 𝑘

• Questions

• Why do we use B+-tree as database index instead of
binary trees?

• Why do we use B+-tree as database index instead of
B-trees (next slide)?
• What are the differences/pros/cons of B-trees vs. B+-tree

as index?

19

vs.

B+-tree versus B-tree

• B-tree: why not store records (or record pointers)
in non-leaf nodes?
• These records can be accessed with fewer I/O’s

• Problems?
• Storing more data in a node decreases fan-out and

increases ℎ
• Records in leaves require more I/O’s to access
• Vast majority of the records live in leaves!

20

Lookups

• SELECT * FROM R WHERE k = 179;
• SELECT * FROM R WHERE k = 32;

21
3 5 11 30 35 10

0
10

1
11

0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

30

10
0

12
0

15
0

18
0

Max fan-out: 4

17
9

Not found

Practice Problems

• SELECT * FROM R WHERE k = 179;
• SELECT * FROM R WHERE k = 32;

22
3 5 11 30 35 10

0
10

1
11

0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

30

10
0

12
0

15
0

18
0

17
9

Not found

Asssumptions: Cost = 3
1. Height = 3
2. Each node = 1 block

= 1 disk I/O = 1 cost
3. All nodes of B+tree on disk
4. At most one matching tuple
for every search key
Just find if such a tuple exist

Asssumptions: Cost = 1
1. Height = 3
2. Each node = 1 block

= 1 disk I/O = 1 cost
3. First two levels are in memory
4. At most one matching tuple
for every search key

Asssumptions: Cost <= 3 +1 = 4
1. Height = 3
2. Each node = 1 block
= 1 disk I/O = 1 cost
3. All nodes of B+tree on disk
4. At most one matching tuple
for every search key
Give me the tuple as well

Recap: Search key and Data entry

• SELECT * FROM R WHERE k = 179;

23
3 5 11 30 35 10

0
10

1
11

0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

30

10
0

12
0

15
0

18
0

17
9

Search key
(value)

Data Entry
(pointer to tuple)

Range query

• SELECT * FROM R WHERE k > 32 AND k < 179;

24
3 5 11 30 35 10

0
10

1
11

0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

30

10
0

12
0

15
0

18
0

Max fan-out: 4

10
0

10
1

11
0

12
0

13
0

15
0

15
6

Look up 32…

And follow next-leaf pointers until you hit upper bound

35

Practice Problem 2

• SELECT * FROM R WHERE k > 32 AND k < 179;

25
3 5 11 30 35 10

0
10

1
11

0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

30

10
0

12
0

15
0

18
0

10
0

10
1

11
0

12
0

13
0

15
0

15
6

Look up 32…

And follow next-leaf pointers until you hit upper bound

35

Assume height = h
Assume there are L matching leaves
= matching data entries reside on L leaves
Assume one node = one block

= 1 cost = 1I/O
Everything on disk
Assume you only need to check existenceCost = h + L - 1

End of lecture
Thurs 10/13

Insertion

• Insert a record with search key value 32

26
3 5 11 30 35 10

0
10

1
11

0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

30

10
0

12
0

15
0

18
0

Max fan-out: 4

Look up where the
inserted key
should go…

32

And insert it right there

Another insertion example

• Insert a record with search key value 152

27

10
0

10
1

11
0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

10
0

12
0

15
0

18
0

Max fan-out: 4

15
2

Oops, node is already full!

What are our options here?

You could reorganize with a sibling here
since they have space
e.g., (150, 152, 156) and (179, 180, 200)
The parent should be (120, 150, 179)

Node splitting
28

12
0

13
0

15
0

15
6

17
9

18
0

20
0

10
0

12
0

15
0

18
0

Max fan-out: 4

15
2

10
0

10
1

11
0

15
6

Need to add to parent node a pointer
to the newly created node

Oops, that node
becomes full!

Note:
1. we “copy up” while splitting leaves –
Insertion both at leaf and parent
2. The value inserted at parent may *not* be
the new value we are inserting

More node splitting
29

12
0

13
0

15
0

15
6

17
9

18
0

20
0

10
0

18
0

Max fan-out: 4

15
2

10
0

10
1

11
0

12
0

15
0

15
6

Need to add to parent node a pointer
to the newly created node

• In the worst case, node splitting can “propagate” all the way up
to the root of the tree (not illustrated here)
• Splitting the root introduces a new root of fan-out 2 and causes the tree

to grow “up” by one level

Note:
We “push up” while splitting non-
leaves, insertion ONLY at the
parent node (from the middle)
This is so that we do not have a
dangling pointer at non-leaves

Deletion

• Delete a record with search key value 130

30

10
0

10
1

11
0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

10
0

12
0

15
0

18
0

Max fan-out: 4

Look up the key
to be deleted…

And delete it
Oops, node is too empty!

If a sibling has more
than enough keys,
steal one!

Stealing from a sibling
31

10
0

10
1

11
0

12
0

15
0

15
6

17
9

18
0

20
0

10
0

12
0

15
0

18
0

Max fan-out: 4

15
6

Remember to fix the key
in the least common ancestor
of the affected nodes

Another deletion example

• Delete a record with search key value 179

32

10
0

10
1

11
0

12
0

15
0

15
6

17
9

18
0

20
0

10
0

12
0

15
6

18
0

Max fan-out: 4

Cannot steal from siblings
Then coalesce (merge) with a sibling!

Coalescing

• Deletion can “propagate” all the way up to the root of the
tree (not illustrated here)
• When the root becomes empty, the tree “shrinks” by one level

33

10
0

10
1

11
0

12
0

15
0

15
6

18
0

20
0

10
0

12
0

15
6

18
0

Max fan-out: 4

Remember to delete the
appropriate key from parent

Performance analysis

• How many I/O’s are required for each operation?
• ℎ, the height of the tree (more or less)
• Plus one or two to manipulate actual records
• Plus 𝑂 ℎ for reorganization (rare if 𝑓 is large)
• Minus one if we cache the root in memory

• How big is ℎ?
• Roughly log!"#$%&𝑁, where 𝑁 is the number of records
• B+-tree properties guarantee that fan-out is least 𝑓/2 for

all non-root nodes
• Fan-out is typically large (in hundreds)—many keys and

pointers can fit into one block
• A 4-level B+-tree is enough for “typical” tables

34

B+-tree in practice

• Complex reorganization for deletion often is not
implemented (e.g., Oracle)
• Leave nodes less than half full and periodically

reorganize

• Most commercial DBMS use B+-tree instead of
hashing-based indexes because B+-tree handles
range queries
• A key difference between hash and tree indexes!

35

• If order of data records in a file is the same as, or `close to’,
order of data entries in an index, then clustered, otherwise
unclustered

• How does it affect # of page accesses? (in class)

Index entries

Data entries

direct search for

(Index File)
(Data file)

Data Records

data entries

Data entries

Data Records

CLUSTERED UNCLUSTERED

36

Clustered vs. Unclustered Index

• How does it affect # of page accesses?
• Recall disk-memory diagram!

• SELECT * FROM USER WHERE age = 50
• Assume 12 users with age = 50
• Assume one data page can hold 4 User tuples
• Suppose searching for a data entry requires 3 IOs in a

B+-tree, which contain pointers to the data records (assume
all matching pointers = data entries are in the same node of
B+-tree)

• What happens if the index is unclustered? (cost 3+12)

• What happens if the index is clustered? (cost <= 3 +(3 +1))
• +1 for page boundary

37

Clustered vs. Unclustered Index
Data is sorted on search key Data can be anywhere

The Halloween Problem

• Story from the early days of System R…
UPDATE Payroll
SET salary = salary * 1.1
WHERE salary <= 25000;
• There is a B+-tree index on Payroll(salary)
• All employees end up earning >= 25000 (why?)

• Solutions?
• Scan index in reverse, or
• Before update, scan index to create a “to-do” list, or
• During update, maintain a “done” list, or
• Tag every row with transaction/statement id

38

https://en.wikipedia.org/wiki/Halloween_Problem

ISAM
FISAM (Index Sequential Access Method), static

version of B+-tree
FUpdates are handled by (long) overflow chains
• Overflow chains and empty data blocks degrade

performance
• Worst case: most records go into one long chain, so

lookups require scanning all data!

39

100, 200, …, 901

100, 123, …, 192 901, …, 996…Index blocks 200, …

100, 108,
119, 121

123, 129,
…

901, 907,
…

996, 997,
…… … …

Data blocks

192, 197,
…

200, 202,
…

Beyond ISAM, B-trees, and B+-trees

• Other tree-based indexes: R-trees and variants,
GiST, etc.

• Hashing-based indexes: extensible hashing, linear
hashing, etc.

• Text indexes: inverted-list index, suffix arrays, etc.

• Other tricks: bitmap index, bit-sliced index, etc.

40FYI – not covered in this class

Hash vs. Tree Index
• Hash indexes can only handle equality queries

• SELECT * FROM R WHERE age = 5 (requires hash index on (age))
• SELECT * FROM R, S WHERE R.A = S.A (requires hash index on R.A or S.A)
• SELECT * FROM R WHERE age = 5 and name = ‘Bart’ (requires hash index on (age,

name))

• Index on prefixes: There can be “composite” hash or tree index on a set of
attributes.
• E.g., a tree-index on composite attributes (A, B) may have values as data entries (2, 1),

(2, 2) (3, 1), (3, 5), (3, 7), (4, 1), (4, 5), …
• Like “lexicographic order” – when same value of A, sort by B

• (-) Hash index Cannot handle range queries or prefixes
• SELECT * FROM R WHERE age >= 5
• need to use tree indexes (more common)
• Tree index on (age), or (age, name) works, but not (name, age) – why?
• Hash index on only (age) works, hash index on (age, name) does not work

• (+) Hash-indexes are more amenable to parallel processing
• Will learn more in hash-based join

• Performance depends on how good the hash function is (whether the hash function
distributes data uniformly and whether data has skew)

41Need to know only this much
About hash indexes in this class

Trade-offs for Indexes
• Should we use as many indexes as possible?

42

Trade-offs for Indexes
• Should we use as many indexes as possible?

• Indexes can make
• queries go faster
• updates slower

• Require disk space, too

43End of lecture on 10/18

