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Announcements (Thu. Oct 13)
• Project, project, & project!

• MS-2 due today (10/13)
• HW4 due 10/20 - group submission per project team
• DS7 – team work for project & HW4
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Recall the Disk-Main Memory diagram!
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Dirty block

Disk read

Disk write



Topics

• Index

• Dense vs. Sparse
• Clustered vs. unclustered
• Primary vs. secondary
• Tree-based vs. Hash-index
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Related



What are indexes for?

• Given a value, locate the record(s) with this value
SELECT * FROM R WHERE A = value;
SELECT * FROM R, S WHERE R.A = S.B;

• Find data by other search criteria, e.g.
• Range search

SELECT * FROM R WHERE A > value;
• Keyword search
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database indexing Search

Focus
of this
lecture



Dense and sparse indexes
• Dense: one index entry for each search key value

• One entry may “point” to multiple records (e.g., two users named Jessica)
• Sparse: one index entry for each block

• Records must be clustered according to the search key
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Bart

Jessica

Lisa

Martin

Milhouse

Nelson

Ralph

Sherri

Terri

Windel

123

456

857

Sparse index
on uid

Dense index
on name

123 Milhouse 10 0.2

142 Bart 10 0.9

279 Jessica 10 0.9

345 Martin 8 2.3

456 Ralph 8 0.3

512 Nelson 10 0.4

679 Sherri 10 0.6

697 Terri 10 0.6

857 Lisa 8 0.7

912 Windel 8 0.5

997 Jessica 8 0.5

When are these  
possible?

Comparison?



Dense versus sparse indexes

• Index size
• ??

• Requirement on records
• ??

• Lookup
• ??

• Update
• ??
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Dense versus sparse indexes

• Index size
• Sparse index is smaller

• Requirement on records
• Records must be clustered for sparse index

• Lookup
• Sparse index is smaller and may fit in memory
• Dense index can directly tell if a record exists

• Update
• May be easier for sparse index (less movement for 

updates)
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Primary and secondary indexes

• Primary index
• Created for the primary key of a table
• Records are usually clustered by the primary key
• Can be sparse

• Secondary index
• Usually dense

• SQL
• PRIMARY KEY declaration automatically creates a primary 

index, UNIQUE key automatically creates a secondary 
index
• Additional secondary index can be created on non-key 

attribute(s):
CREATE INDEX UserPopIndex ON User(pop);
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What if the index is too big as well?
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What if the index is too big as well?
11

Bart

Jessica

Lisa

Martin

Milhouse

Nelson

Ralph

Sherri

Terri

Windel

123

456

857

Sparse index
on uid

Dense index
on name

123 Milhouse 10 0.2

142 Bart 10 0.9

279 Jessica 10 0.9

345 Martin 8 2.3

456 Ralph 8 0.3

512 Nelson 10 0.4

679 Sherri 10 0.6

697 Terri 10 0.6

857 Lisa 8 0.7

912 Windel 8 0.5

997 Jessica 8 0.5

Put a another (sparse) index on top of that!



Binary Search Tree
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50

30 70

25 47 59 84

Each node can hold 
Exactly one entry

Leaves are sorted

Height balanced:
All leaves are at the 
Same level
(complete binary tree)

< 50 >= 50 

< 30 >= 30 < 70 >= 70 

End of Lecture 10/6
(some earlier slides were skipped
That will be covered next weeks)



Remember Terminology
• Index search key (key): k
• Used to search a record

• Data entry : k*
• Pointed to by k 
• Contains record id(s) 

• (-) another level of indirection (+) small and fixed length entries
• or record itself

• (-) can be large, cannot be stored in memory, (+) saves some 
disk access

• Records or data
• Actual tuples
• Pointed to by record ids
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INDEX
does this

On disk



B-tree: Generalizing Binary Search Trees
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50

30 ??

25 44 ?? ??

42 ??

27 46 ?? ??35 39 ????

Each node 
can hold multiple entries,
has fixed max size
and is sorted

Each node does not have
To be full
#pointers = #entries + 1

Height balanced

Leaves are sorted

< 50 >= 50 

< 30 >= 30
< 42 

>= 42 

?? = 
Fill in 
the 
class



B+-tree: Data only at leaves
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50

30 59

25 44 ?? ??

42 ??

27 46 59 ??35 39 ????

Index Nodes
Containing 
Index entries

Data entries: Pointers to actual tuples

< 50 >= 50 

< 30 >= 30
< 42 

>= 42 Data values can be repeated as index

Leaves are linked



B+-tree balancing properties

• Height constraint: all leaves at the same lowest level
• Fan-out constraint: all nodes at least half full 

(except root)

Max #   Max # Min # Min #
pointers keys active pointers keys

Non-leaf 𝑓 𝑓 − 1 ⌈𝑓/2⌉ ⌈𝑓/2⌉ − 1
Root 𝑓 𝑓 − 1 2 1
Leaf 𝑓 𝑓 − 1 ⌊𝑓/2⌋ ⌊𝑓/2⌋
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Check yourself



B+-tree: Closer Look

• A hierarchy of nodes with intervals
• Balanced (more or less): good performance guarantee
• Disk-based: one node per block; large fan-out
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Sample B+-tree nodes
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Max fan-out: 4

12
0

15
0

18
0

to keys 
100 ≤ 𝑘 < 120

to keys
120 ≤ 𝑘 < 150

to keys
150 ≤ 𝑘 < 180

to keys
180 ≤ 𝑘

Non-leaf
12

0
13

0

to records with these 𝑘 values;
or, store records directly in leaves (pros/cons?)

to next leaf node in sequenceLeaf

to keys
100 ≤ 𝑘



• Questions

• Why do we use B+-tree as database index instead of 
binary trees?

• Why do we use B+-tree as database index instead of 
B-trees (next slide)?
• What are the differences/pros/cons of B-trees vs. B+-tree 

as index?
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vs.



B+-tree versus B-tree

• B-tree: why not store records (or record pointers) 
in non-leaf nodes?
• These records can be accessed with fewer I/O’s

• Problems?
• Storing more data in a node decreases fan-out and 

increases ℎ
• Records in leaves require more I/O’s to access
• Vast majority of the records live in leaves!
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Lookups

• SELECT * FROM R WHERE k = 179;
• SELECT * FROM R WHERE k = 32;
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Practice Problems

• SELECT * FROM R WHERE k = 179;
• SELECT * FROM R WHERE k = 32;
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Not found

Asssumptions: Cost = 3
1. Height = 3
2. Each node = 1 block 

= 1 disk I/O = 1 cost
3. All  nodes of B+tree on disk
4. At most one matching tuple 
for every  search key
Just find if such a tuple exist

Asssumptions: Cost = 1
1. Height = 3
2. Each node = 1 block 

= 1 disk I/O = 1 cost
3. First two levels are in memory
4. At most one matching tuple 
for every  search key

Asssumptions: Cost <= 3 +1  = 4
1. Height = 3
2. Each node = 1 block
= 1 disk I/O = 1 cost
3. All  nodes of B+tree on disk
4. At most one matching tuple 
for every  search key
Give me the tuple as well



Recap: Search key and Data entry

• SELECT * FROM R WHERE k = 179;
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Range query

• SELECT * FROM R WHERE k > 32 AND k < 179;
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Look up 32…

And follow next-leaf pointers until you hit upper bound
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Practice Problem 2

• SELECT * FROM R WHERE k > 32 AND k < 179;
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Look up 32…

And follow next-leaf pointers until you hit upper bound
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Assume height = h
Assume there are L matching leaves
= matching data entries reside on L leaves
Assume one node = one block 

= 1 cost = 1I/O
Everything on disk
Assume you only need to check existenceCost = h + L - 1

End of lecture
Thurs 10/13



Insertion

• Insert a record with search key value 32
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And insert it right there



Another insertion example

• Insert a record with search key value 152
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Oops, node is already full!

What are our options here?

You could reorganize with a sibling here 
since they have space 
e.g., (150, 152, 156) and (179, 180, 200)
The parent should be (120, 150, 179)



Node splitting
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Oops, that node 
becomes full!

Note: 
1. we “copy up” while splitting leaves –
Insertion both at leaf and parent
2. The value inserted at parent may *not* be 
the new value we are inserting



More node splitting
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• In the worst case, node splitting can “propagate” all the way up 
to the root of the tree (not illustrated here)
• Splitting the root introduces a new root of fan-out 2 and causes the tree 

to grow “up” by one level

Note: 
We “push up” while splitting non-
leaves, insertion ONLY at the 
parent node (from the middle) 
This is so that we do not have a 
dangling pointer at non-leaves



Deletion

• Delete a record with search key value 130
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If a sibling has more
than enough keys,
steal one!



Stealing from a sibling
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Another deletion example

• Delete a record with search key value 179
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Coalescing

• Deletion can “propagate” all the way up to the root of the 
tree (not illustrated here)
• When the root becomes empty, the tree “shrinks” by one level
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Performance analysis

• How many I/O’s are required for each operation?
• ℎ, the height of the tree (more or less)
• Plus one or two to manipulate actual records
• Plus 𝑂 ℎ for reorganization (rare if 𝑓 is large)
• Minus one if we cache the root in memory

• How big is ℎ?
• Roughly log!"#$%&𝑁, where 𝑁 is the number of records
• B+-tree properties guarantee that fan-out is least 𝑓/2 for 

all non-root nodes 
• Fan-out is typically large (in hundreds)—many keys and 

pointers can fit into one block
• A 4-level B+-tree is enough for “typical” tables
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B+-tree in practice

• Complex reorganization for deletion often is not 
implemented (e.g., Oracle)
• Leave nodes less than half full and periodically 

reorganize

• Most commercial DBMS use B+-tree instead of 
hashing-based indexes because B+-tree handles 
range queries
• A key difference between hash and tree indexes!
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• If order of data records in a file is the same as, or `close to’, 
order of data entries in an index, then clustered, otherwise 
unclustered

• How does it affect # of page accesses? (in class)

Index entries

Data entries

direct search for 

(Index File)
(Data file)

Data Records

data entries

Data entries

Data Records

CLUSTERED UNCLUSTERED

36

Clustered vs. Unclustered Index



• How does it affect # of page accesses? 
• Recall disk-memory diagram!

• SELECT * FROM USER WHERE age = 50
• Assume 12 users with age = 50
• Assume one data page can hold 4 User tuples
• Suppose searching for a data entry requires 3 IOs in a 

B+-tree, which contain pointers to the data records (assume 
all  matching pointers = data entries are in the same node of 
B+-tree)

• What happens if the index is unclustered? (cost 3+12)

• What happens if the index is clustered? (cost <= 3 +(3 +1))
• +1 for page boundary
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Clustered vs. Unclustered Index
Data is sorted on search key Data can be anywhere



The Halloween Problem

• Story from the early days of System R…
UPDATE Payroll
SET salary = salary * 1.1
WHERE salary <= 25000;
• There is a B+-tree index on Payroll(salary)
• All employees end up earning >= 25000 (why?)

• Solutions?
• Scan index in reverse, or
• Before update, scan index to create a “to-do” list, or
• During update, maintain a “done” list, or
• Tag every row with transaction/statement id
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https://en.wikipedia.org/wiki/Halloween_Problem



ISAM
FISAM (Index Sequential Access Method), static 

version of B+-tree
FUpdates are handled by (long) overflow chains
• Overflow chains and empty data blocks degrade 

performance
• Worst case: most records go into one long chain, so 

lookups require scanning all data!
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100, 200, …, 901

100, 123, …, 192 901, …, 996…Index blocks 200, …    

100, 108,
119, 121

123, 129,
…

901, 907,
…

996, 997,
…… … …

Data blocks

192, 197,
…

200, 202,
…



Beyond ISAM, B-trees, and B+-trees

• Other tree-based indexes: R-trees and variants, 
GiST, etc. 

• Hashing-based indexes: extensible hashing, linear 
hashing, etc.

• Text indexes: inverted-list index, suffix arrays, etc.

• Other tricks: bitmap index, bit-sliced index, etc.

40FYI – not covered in this class



Hash vs. Tree Index
• Hash indexes can only handle equality queries

• SELECT * FROM R WHERE age = 5 (requires hash index on (age))
• SELECT * FROM R, S WHERE R.A = S.A (requires hash index on R.A or S.A)
• SELECT * FROM R WHERE age = 5 and name = ‘Bart’ (requires hash index on (age, 

name))

• Index on prefixes: There can be “composite” hash or tree index on a set of 
attributes.
• E.g., a tree-index on composite attributes (A, B) may have values as data entries (2, 1), 

(2, 2) (3, 1), (3, 5), (3, 7), (4, 1), (4, 5), …
• Like “lexicographic order” – when same value of A, sort by B

• (-) Hash index Cannot handle range queries or prefixes
• SELECT * FROM R WHERE age >= 5
• need to use tree indexes (more common)
• Tree index on (age), or (age, name) works, but not (name, age) – why?
• Hash index on only (age) works, hash index on (age, name) does not work

• (+) Hash-indexes are more amenable to parallel processing
• Will learn more in hash-based join

• Performance depends on how good the hash function is (whether the hash function 
distributes data uniformly and whether data has skew)

41Need to know only this much 
About hash indexes in this class



Trade-offs for Indexes
• Should we use as many indexes as possible?
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Trade-offs for Indexes
• Should we use as many indexes as possible?

• Indexes can make 
• queries go faster
• updates slower

• Require disk space, too

43End of lecture on 10/18


