External Sorting and Join Algorithms

Introduction to Databases
CompSci 316 Fall 2022
Announcements (Thu. Oct 27)

- Gradiance-5 (XML) due Wednesday 11/02 10 pm
 - No late days
- HW-5 (XML + Index) due Thursday 11/03 10 pm
- Discussion this week on XML/Index
- MS-3 due Thursday 11/10
 - No homework that week, there may be a gradiance
Notation

- Relations: R, S
- Tuples: r, s
- Number of tuples: $|R|, |S|$
- Number of disk blocks: $B(R), B(S)$
- Number of memory blocks available: M

Cost metric
- Number of I/O’s
- Memory requirement

Recall our disk-memory diagram!

$B(R) = 2$
$B(S) = 3$

$M = 12$
Dirty block
Scanning-based algorithms

Table scan

Cost for selection?
Cost for projection?
Table scan

• Scan table R and process the query
 • Selection over R
 • Projection of R without duplicate elimination
• I/O’s: $B(R)$
 • Trick for selection: stop early if it is a lookup by key
• Memory requirement: 2
• Not counting the cost of writing the result out
 • Same for any algorithm!
 • Maybe not needed—results may be pipelined into another operator

remember
• How do we implement Join?

• Common Join Algorithms:
 • Nested Loop join
 • Block-nested, Index nested
 • Sort-merge join
 • Hash Join (for = join)
 • Many other join algos

• Cost?
 • (page I/O -- in terms of B(R), |R| etc.)

• Memory requirement?

Understand the approach/computation – do not memorize/rely on the “formula”
Nested-loop join

\[R \bowtie_p S \]

- For each block of \(R \), and for each \(r \) in the block:
 - For each block of \(S \), and for each \(s \) in the block:
 - Output \(rs \) if \(p \) evaluates to true over \(r \) and \(s \)
- \(R \) is called the outer table; \(S \) is called the inner table
- I/O’s: \(B(R) + |R| \cdot B(S) \)
- Memory requirement: 3

Improvement: block-based nested-loop join
Block-based Nested Loop Join

• $R \bowtie_p S$

• R outer, S inner

• For each block of R, for each block of S:
 For each r in the R block, for each s in the S block: ...
 • I/O’s: $B(R) + B(R) \cdot B(S)$
 • Memory requirement: same as before

End of lecture on 10/27
Announcements (Tue. Nov 1)

• Gradiance-5 (XML) due tomorrow Wednesday 11/02 10 pm
 • No late days
• HW-5 (XML + Index) due Thursday 11/03 10 pm
• Discussion this week on query processing practice problems
• MS-3 due Thursday 11/10
 • No homework that week, there may be a gradiance

Start of lecture on 11/1
Recap – nested loop joins – in class

Count the I/O cost!

Max 4 pages available in memory

Suppose any page can contain max 2 tuples

B(R) = 2
R outer

B(S) = 3
S inner

2
5
3
1
7

1

More improvements

• Make use of available memory
 • Stuff memory with as much of \(R \) as possible, stream \(S \) by, and join every \(S \) tuple with all \(R \) tuples in memory

• I/O’s: \(B(R) + \left\lfloor \frac{B(R)}{M-2} \right\rfloor \cdot B(S) \)
 • Or, roughly: \(B(R) \cdot B(S)/M \)
 • Memory requirement: \(M \) (as much as possible)

• Which table would you pick as the outer?
Sorting-based algorithms

http://en.wikipedia.org/wiki/Mail_sorter#mediaviewer/File:Mail_sorting,1951.jpg
External merge sort

Remember (internal-memory) merge sort?
Problem: sort R, but R does not fit in memory

To understand:
We are going to make multiple passes on the input
After each pass, we make “runs”: a bunch of pages that are sorted together

Recap in class: How 2-way merge sort works? (from your algo class)
How to extend to multi-way merge sort?
External merge sort

Remember (internal-memory) merge sort?
Problem: sort R, but R does not fit in memory

• **Pass 0**: read M blocks of R at a time, sort them, and write out a level-0 run

• **Pass 1**: merge $(M - 1)$ level-0 runs at a time, and write out a level-1 run

• **Pass 2**: merge $(M - 1)$ level-1 runs at a time, and write out a level-2 run

...

• **Final pass** produces one sorted run
Toy example

- 3 memory blocks available; each holds one number
- Input: 1, 7, 4, 5, 2, 8, 3, 6, 9
- Pass 0
 - 1, 7, 4 → 1, 4, 7
 - 5, 2, 8 → 2, 5, 8
 - 9, 6, 3 → 3, 6, 9
- Pass 1
 - 1, 4, 7 + 2, 5, 8 → 1, 2, 4, 5, 7, 8
 - 3, 6, 9
- Pass 2 (final)
 - 1, 2, 4, 5, 7, 8 + 3, 6, 9 → 1, 2, 3, 4, 5, 6, 7, 8, 9
Analysis

• **Pass 0**: read M blocks of R at a time, sort them, and write out a level-0 run
 • There are $\left\lceil \frac{B(R)}{M} \right\rceil$ level-0 sorted runs

• **Pass i**: merge $(M - 1)$ level-$(i - 1)$ runs at a time, and write out a level-i run
 • $(M - 1)$ memory blocks for input, 1 to buffer output
 • # of level-i runs = $\left\lceil \frac{\text{# of level-} (i-1) \text{ runs}}{M-1} \right\rceil$

• **Final pass** produces one sorted run
Performance of external merge sort

- Number of passes: \(\left\lceil \log_{M-1} \left(\frac{B(R)}{M} \right) \right\rceil + 1 \)
- I/O's
 - Multiply by \(2 \cdot B(R) \): each pass reads the entire relation once and writes it once
 - Subtract \(B(R) \) for the final pass
 - Roughly, this is \(O(B(R) \times \log_M B(R)) \)
- Memory requirement: \(M \) (as much as possible)

We do not count the final write!
Note: The pages of memory are being reused!

- We just have M memory blocks/pages, whereas the number of blocks of R can be much larger
 - \(B(R) \gg M \) typically
 - Otherwise you will load all pages and sort in memory in a single pass!

- We need to reuse both input and output pages in memory
 - Once the output pages are full, flush them (write) to disk
 - Once an input page is fully processed in Pass-1 onward, get the next page from the same run
 - In pass-0, sort M-pages together, reuse the memory pages for the next M-pages and so on...

- Pass-0 uses an “in-place” sorting algorithm (with constant additional space), so all M pages can be used
Announcements (Thu. Nov 3)

• HW-5 (XML + Index) due Today - Thursday 11/03 10 pm
• Discussion this week on query processing practice problems
• MS-3 due Thursday 11/10
 • No homework, No Gradiance that week
• Keep working on your project after you are done with HW-5!
 • Team work is important and has some points allocated for that
• (If you have not seen already) You can check your midterm % score and midterm grade on Sakai

Start of lecture on 11/3
Some tricks for sorting

• Double buffering
 • Allocate an additional block for each run
 • Overlap I/O with processing
 • Trade-off: smaller fan-in (more passes)

• Blocked I/O
 • Instead of reading/writing one disk block at time, read/write a bunch (“cluster”)
 • More sequential I/O’s
 • Trade-off: larger cluster → smaller fan-in (more passes)
Sort-merge join

\[R \bowtie_{R.A=S.B} S \]

- Sort \(R \) and \(S \) by their join attributes; then merge
 - \(r, s = \) the first tuples in sorted \(R \) and \(S \)
 - Repeat until one of \(R \) and \(S \) is exhausted:
 - If \(r.A > s.B \) then \(s = \) next tuple in \(S \)
 - else if \(r.A < s.B \) then \(r = \) next tuple in \(R \)
 - else output all matching tuples, and
 - \(r, s = \) next in \(R \) and \(S \)

- I/O’s: sorting + \(2B(R) + 2B(S) \) (always?)
 - In most cases (e.g., join of key and foreign key)
 - Worst case is \(B(R) \cdot B(S) \): everything joins
Example of merge join

\[R \bowtie_{R.A = S.B} S: \]

\[R: \]
\[- r_1.A = 1 \]
\[- r_2.A = 3 \]
\[- r_3.A = 3 \]
\[- r_4.A = 5 \]
\[- r_5.A = 7 \]
\[- r_6.A = 7 \]
\[- r_7.A = 8 \]

\[S: \]
\[- s_1.B = 1 \]
\[- s_2.B = 2 \]
\[- s_3.B = 3 \]
\[- s_4.B = 3 \]
\[- s_5.B = 8 \]

\[r_1s_1 \]
\[r_2s_3 \]
\[r_2s_4 \]
\[r_3s_3 \]
\[r_3s_4 \]
\[r_7s_5 \]
Optimization of SMJ

- Idea: combine join with the (last) merge phase of merge sort
- **Sort**: produce sorted runs for R and S such that there are fewer than M of them total
- **Merge and join**: merge the runs of R, merge the runs of S, and merge-join the result streams as they are generated!
Performance of SMJ

• If SMJ completes in two passes:
 • I/O’s: $3 \cdot (B(R) + B(S))$ - why 3?
 • Memory requirement
 • We must have enough memory to accommodate one block from each run: $M > \frac{B(R)}{M} + \frac{B(S)}{M}$
 • $M > \sqrt{B(R) + B(S)}$

• If SMJ cannot complete in two passes:
 • Repeatedly merge to reduce the number of runs as necessary before final merge and join
Other sort-based algorithms

• Union (set), difference, intersection
 • More or less like SMJ

• Duplication elimination
 • External merge sort
 • Eliminate duplicates in sort and merge

• Grouping and aggregation
 • External merge sort, by group-by columns
 • Trick: produce “partial” aggregate values in each run, and combine them during merge
 • This trick doesn’t always work though
 • Examples: SUM(DISTINCT ...), MEDIAN(...)

Hashing-based algorithms

Hash join

\(R \bowtie_{R.A=S.B} S \)

- **Main idea**
 - Partition \(R \) and \(S \) by hashing their join attributes, and then consider corresponding partitions of \(R \) and \(S \)
 - If \(r.A \) and \(s.B \) get hashed to different partitions, they don’t join

Diagram:
- **Nested-loop join**
 - Considers all slots
- **Hash join**
 - Considers only those along the diagonal!
Partitioning phase

- Partition R and S according to the same hash function on their join attributes

Diagram:
- R is partitioned into $M-1$ partitions in memory.
- S has the same partitioning.
- Each partition is stored on disk.
Probing phase

• Read in each partition of R, stream in the corresponding partition of S, join
 • Typically build a hash table for the partition of R
 • Not the same hash function used for partition, of course!
Example

- \(R(A), S(B)\)
- \(R \bowtie_{R.A=S.B} S\)
- \(B(R) = 6\)
- \(B(S) = 9\)
- \(M = 4\)
- Each page of \(R, S\) contains just one record
- Hash function for partitioning \(h = A \% 3\) (for \(R\)), \(B \% 3\) for \(S\)
- Hash function for probing \(h2 = A \% 2\) (for \(R\)), \(B \% 2\) for \(S\)

Partitioning for \(R\) done, next similar for \(S\)

Probing for partition-0 and 1st page of \(S\) in partition 0, Similarly for other pages of \(S\), and for partitions 1 and 2

2-pass works here as at least one relation has \(<= 2\) pages in each partition
Performance of (two-pass) hash join

• If hash join completes in two passes:
 • I/O’s: \(3 \cdot (B(R) + B(S))\)
 • Memory requirement:
 • In the probing phase, we should have enough memory to fit one partition of \(R\): \(M - 1 > \frac{B(R)}{M-1}\)
 • \(M > \sqrt{B(R)} + 1\)
 • We can always pick \(R\) to be the smaller relation, so:
 \(M > \sqrt{\min(B(R), B(S))} + 1\)
Generalizing for larger inputs

• What if a partition is too large for memory?
 • Read it back in and partition it again!
 • See the duality in multi-pass merge sort here?
Hash join versus SMJ

(Assuming two-pass)

- I/O’s: same
- Memory requirement: hash join is lower
 \[\sqrt{\min(B(R), B(S))} + 1 < \sqrt{B(R) + B(S)} \]
 - Hash join wins when two relations have very different sizes

- Other factors
 - Hash join performance depends on the quality of the hash
 - Might not get evenly sized buckets
 - SMJ can be adapted for inequality join predicates
 - SMJ wins if \(R \) and/or \(S \) are already sorted
 - SMJ wins if the result needs to be in sorted order
What about nested-loop join?

• May be best if many tuples join
 • Example: non-equality joins that are not very selective

• Necessary for black-box predicates
 • Example: WHERE user_defined_pred(R. A, S. B)
Other hash-based algorithms

• Just like Sorting!

• Union (set), difference, intersection
 • More or less like hash join

• Duplicate elimination
 • Check for duplicates within each partition/bucket

• Grouping and aggregation
 • Apply the hash functions to the group-by columns
 • Tuples in the same group must end up in the same partition/bucket
 • Keep a running aggregate value for each group
 • May not always work
Index-based algorithms
Selection using index

- Equality predicate: $\sigma_{A=v}(R)$
 - Use an ISAM, B+-tree, or hash index on $R(A)$
- Range predicate: $\sigma_{A>v}(R)$
 - Use an ordered index (e.g., ISAM or B+-tree) on $R(A)$
 - Hash index is not applicable

- Indexes other than those on $R(A)$ may be useful
 - Example: B+-tree index on $R(A, B)$
 - How about B+-tree index on $R(B, A)$?
Index versus table scan

Situations where index clearly wins:

- **Index-only queries** which do not require retrieving actual tuples
 - Example: $\pi_A(\sigma_{A>v}(R))$

- Primary index clustered according to search key
 - One lookup leads to all result tuples in their entirety
Index versus table scan (cont’d)

BUT(!):

• Consider $\sigma_{A>v}(R)$ and a secondary, non-clustered index on $R(A)$
 • Need to follow pointers to get the actual result tuples
 • Say that 20% of R satisfies $A > v$
 • Could happen even for equality predicates
 • I/O’s for index-based selection: lookup + 20% $|R|$
 • I/O’s for scan-based selection: $B(R)$
 • Table scan wins if a block contains more than 5 tuples!
Index nested-loop join

\(R \bowtie_{R.A=S.B} S \)

- Idea: use a value of \(R.A \) to probe the index on \(S(B) \)
- For each block of \(R \), and for each \(r \) in the block:
 - Use the index on \(S(B) \) to retrieve \(s \) with \(s.B = r.A \)
 - Output \(rs \)
- I/O’s: \(B(R) + |R| \cdot \text{(index lookup)} \)
 - Typically, the cost of an index lookup is 2-4 I/O’s
 - Beats other join methods if \(|R| \) is not too big
 - Better pick \(R \) to be the smaller relation
Example

• R.A values (1 R-tuple/page): 7, 2, 9, 8, 3
 • B(R) = |R| = 5

• B+-tree Index on S.B, 2 S-tuples/data page
 • Clustered, 3 levels, all index/data pages in memory
 • Assume foreign key S.B to primary key R.A
 • Assume each R.A joins with the same no. of S.B
 • |S| = 10, B(S) = 5
 • Assume matching data entries fit in one leaf
 • Each R tuple joins with 2 S tuples that fit in 1 S-page

• Algo:
 • For every page of R
 • Cost of R = B(R) = 5
 • For every tuple of R in that page
 • Send the value of R.A as the key value
 • Retrieve the matching S records from data pages pointed to by the matching index entries
 • Output all of them

 • For every R.A value, max cost of accessing matching S tuples = 3 (accessing leaves) + 1 (accessing data page)

 • Total cost of index-nested-loop-join = B(R) + |R| (3+1) = 5 + 5 * 4 = 25
Zig-zag join using ordered indexes

\[R \bowtie_{R.A=S.B} S \]

- Idea: use the ordering provided by the indexes on \(R(A) \) and \(S(B) \) to eliminate the sorting step of sort-merge join
- Use the larger key to probe the other index
 - Possibly skipping many keys that don’t match
Index-Only Plans

- A number of queries can be answered without retrieving any tuples from one or more of the relations involved if a suitable index is available.

**SELECT E.dno, COUNT(*)
FROM Emp E
GROUP BY E.dno**

- If you have an index on E.dno in the above query, no need to access data.
- For index-only strategies, clustering is not important.

**SELECT AVG(E.sal)
FROM Emp E
WHERE E.age=25 AND E.sal BETWEEN 3000 AND 5000**
Summary of techniques

• Scan
 • Selection, duplicate-preserving projection, nested-loop join

• Sort
 • External merge sort, sort-merge join, union (set), difference, intersection, duplicate elimination, grouping and aggregation

• Hash
 • Hash join, union (set), difference, intersection, duplicate elimination, grouping and aggregation

• Index
 • Selection, index nested-loop join, zig-zag join
Key = S.B = 9
(say)