External Sorting and Join Algorithms

Introduction to Databases
CompSci 316 Fall 2022
Announcements (Thu. Oct 27)

• Gradiance-5 (XML) due Wednesday 11/02 10 pm
 • No late days
• HW-5 (XML + Index) due Thursday 11/03 10 pm
• Discussion this week on XML/Index
• MS-3 due Thursday 11/10
 • No homework that week, there may be a gradiance
Notation

• Relations: R, S
• Tuples: r, s
• Number of tuples: $|R|$, $|S|$
• Number of disk blocks: $B(R)$, $B(S)$
• Number of memory blocks available: M
• Cost metric
 • Number of I/O’s
 • Memory requirement

Recall our disk-memory diagram!

$B(R) = 2$ $B(S) = 3$
Scanning-based algorithms

Table scan

Cost for selection?
Cost for projection?
Table scan

• Scan table R and process the query
 • Selection over R
 • Projection of R without duplicate elimination

• I/O’s: $B(R)$
 • Trick for selection: stop early if it is a lookup by key

• Memory requirement: 2

• Not counting the cost of writing the result out
 • Same for any algorithm!
 • Maybe not needed—results may be pipelined into another operator
• How do we implement Join?

• Common Join Algorithms:
 • Nested Loop join
 • Block-nested, Index nested
 • Sort-merge join
 • Hash Join (for = join)
 • Many other join algos

• Cost?
 • (page I/O -- in terms of B(R), |R| etc.)

• Memory requirement?

Understand the approach/computation – do not memorize/rely on the “formula”
Nested-loop join

\(R \bowtie_p S \)

- For each block of \(R \), and for each \(r \) in the block: For each block of \(S \), and for each \(s \) in the block: Output \(rs \) if \(p \) evaluates to true over \(r \) and \(s \)
- \(R \) is called the outer table; \(S \) is called the inner table
- I/O’s: \(B(R) + |R| \cdot B(S) \)
- Memory requirement: 3

Improvement: block-based nested-loop join
Block-based Nested Loop Join

- $R \bowtie_p S$
- R outer, S inner
- For each block of R, for each block of S:
 For each r in the R block, for each s in the S block: ...
 - I/O’s: $B(R) + B(R) \cdot B(S)$
 - Memory requirement: same as before

End of lecture on 10/27
Announcements (Tue. Nov 1)

• Gradiance-5 (XML) due tomorrow Wednesday 11/02 10 pm
 • No late days
• HW-5 (XML + Index) due Thursday 11/03 10 pm
• Discussion this week on query processing practice problems
• MS-3 due Thursday 11/10
 • No homework that week, there may be a gradiance

Start of lecture on 11/1
Recap – nested loop joins – in class

Count the I/O cost!

Max 4 pages available in memory

Suppose any page can contain max 2 tuples

\[B(R) = 2 \]
R outer

\[B(S) = 3 \]
S inner

\[\text{Max 4 pages available in memory} \]
More improvements

• Make use of available memory
 • Stuff memory with as much of R as possible, stream S by, and join every S tuple with all R tuples in memory
 • I/O’s: $B(R) + \left\lfloor \frac{B(R)}{M-2} \right\rfloor \cdot B(S)$
 • Or, roughly: $B(R) \cdot B(S)/M$
 • Memory requirement: M (as much as possible)

• Which table would you pick as the outer?
Sorting-based algorithms

http://en.wikipedia.org/wiki/Mail_sorter#mediaviewer/File:Mail_sorting,1951.jpg
External merge sort

Remember (internal-memory) merge sort?
Problem: sort R, but R does not fit in memory

To understand:
We are going to make multiple passes on the input
After each pass, we make “runs”: a bunch of pages that are sorted together

Recap in class: How 2-way merge sort works? (from your algo class)
How to extend to multi-way merge sort?
External merge sort

Remember (internal-memory) merge sort?

Problem: sort R, but R does not fit in memory

- **Pass 0**: read M blocks of R at a time, sort them, and write out a level-0 run

- **Pass 1**: merge $(M - 1)$ level-0 runs at a time, and write out a level-1 run

- **Pass 2**: merge $(M - 1)$ level-1 runs at a time, and write out a level-2 run

...

- **Final pass** produces one sorted run
Toy example

• 3 memory blocks available; each holds one number
• Input: 1, 7, 4, 5, 2, 8, 3, 6, 9
• Pass 0
 • 1, 7, 4 → 1, 4, 7
 • 5, 2, 8 → 2, 5, 8
 • 9, 6, 3 → 3, 6, 9
• Pass 1
 • 1, 4, 7 + 2, 5, 8 → 1, 2, 4, 5, 7, 8
 • 3, 6, 9
• Pass 2 (final)
 • 1, 2, 4, 5, 7, 8 + 3, 6, 9 → 1, 2, 3, 4, 5, 6, 7, 8, 9
Analysis

• **Pass 0**: read M blocks of R at a time, sort them, and write out a level-0 run
 • There are $\left\lceil \frac{B(R)}{M} \right\rceil$ level-0 sorted runs

• **Pass i**: merge $(M - 1)$ level-$(i - 1)$ runs at a time, and write out a level-i run
 • $(M - 1)$ memory blocks for input, 1 to buffer output
 • # of level-i runs = $\left\lceil \frac{\# \text{ of level}-(i-1) \text{ runs}}{M-1} \right\rceil$

• **Final pass** produces one sorted run
Performance of external merge sort

• Number of passes: \[\log_{M-1} \left[\frac{B(R)}{M} \right] + 1 \]

• I/O’s
 • Multiply by \(2 \cdot B(R)\): each pass reads the entire relation once and writes it once
 • Subtract \(B(R)\) for the final pass
 • Roughly, this is \(O(B(R) \times \log_M B(R))\)

• Memory requirement: \(M\) (as much as possible)

We do not count the final write!
Note: The pages of memory are being reused!

- We just have M memory blocks/pages, whereas the number of blocks of R can be much larger
 - $B(R) \gg M$ typically
 - Otherwise you will load all pages and sort in memory in a single pass!

- We need to reuse both input and output pages in memory
 - Once the output pages are full, flush them (write) to disk
 - Once an input page is fully processed in Pass-1 onward, get the next page from the same run
 - In pass-0, sort M-pages together, reuse the memory pages for the next M-pages and so on...

- Pass-0 uses an “in-place” sorting algorithm (with constant additional space), so all M pages can be used
Announcements (Thu. Nov 3)

• HW-5 (XML + Index) due Today - Thursday 11/03 10 pm
• Discussion this week on query processing practice problems
• MS-3 due Thursday 11/10
 • No homework, No Gradiance that week
• Keep working on your project after you are done with HW-5!
 • Team work is important and has some points allocated for that
• (If you have not seen already) You can check your midterm % score and midterm grade on Sakai

Start of lecture on 11/3
Some tricks for sorting

• Double buffering
 • Allocate an additional block for each run
 • Overlap I/O with processing
 • Trade-off: smaller fan-in (more passes)

• Blocked I/O
 • Instead of reading/writing one disk block at time, read/write a bunch (“cluster”)
 • More sequential I/O’s
 • Trade-off: larger cluster → smaller fan-in (more passes)
Sort-merge join

\[R \bowtie_{R.A=S.B} S \]

- Sort \(R \) and \(S \) by their join attributes; then merge
 \(r, s = \) the first tuples in sorted \(R \) and \(S \)
 Repeat until one of \(R \) and \(S \) is exhausted:
 - If \(r.A > s.B \) then \(s = \) next tuple in \(S \)
 - else if \(r.A < s.B \) then \(r = \) next tuple in \(R \)
 - else output all matching tuples, and
 \(r, s = \) next in \(R \) and \(S \)

- I/O’s: \text{sorting} + 2B(R) + 2B(S) (always?)
 - In most cases (e.g., join of key and foreign key)
 - Worst case is \(B(R) \cdot B(S) \): everything joins
Example of merge join

\[\text{Example of merge join} \]

\[R: \]
- \(r_1.A = 1 \)
- \(r_2.A = 3 \)
- \(r_3.A = 3 \)
- \(r_4.A = 5 \)
- \(r_5.A = 7 \)
- \(r_6.A = 7 \)
- \(r_7.A = 8 \)

\[S: \]
- \(s_1.B = 1 \)
- \(s_2.B = 2 \)
- \(s_3.B = 3 \)
- \(s_4.B = 3 \)
- \(s_5.B = 8 \)

\[R \bowtie_{R.A=S.B} S: \]
- \(r_1 s_1 \)
- \(r_2 s_3 \)
- \(r_2 s_4 \)
- \(r_3 s_3 \)
- \(r_3 s_4 \)
- \(r_7 s_5 \)
Optimization of SMJ

- Idea: combine join with the (last) merge phase of merge sort
- Sort: produce sorted runs for R and S such that there are fewer than M of them total
- Merge and join: merge the runs of R, merge the runs of S, and merge-join the result streams as they are generated!
Performance of SMJ

• If SMJ completes in two passes:
 • I/O’s: \(3 \cdot (B(R) + B(S))\) - why 3?
 • Memory requirement
 • We must have enough memory to accommodate one block from each run:
 \[M > \frac{B(R)}{M} + \frac{B(S)}{M}\]
 \[M > \sqrt{B(R) + B(S)}\]

• If SMJ cannot complete in two passes:
 • Repeatedly merge to reduce the number of runs as necessary before final merge and join
Other sort-based algorithms

• Union (set), difference, intersection
 • More or less like SMJ

• Duplication elimination
 • External merge sort
 • Eliminate duplicates in sort and merge

• Grouping and aggregation
 • External merge sort, by group-by columns
 • Trick: produce “partial” aggregate values in each run, and combine them during merge
 • This trick doesn’t always work though
 • Examples: SUM(DISTINCT ...), MEDIAN(...)
Hashing-based algorithms

Hash join

\[R \bowtie_{R.A=S.B} S \]

- Main idea
 - Partition \(R \) and \(S \) by hashing their join attributes, and then consider corresponding partitions of \(R \) and \(S \)
 - If \(r.A \) and \(s.B \) get hashed to different partitions, they don’t join

Nested-loop join considers all slots

Hash join considers only those along the diagonal!
Partitioning phase

- Partition R and S according to the same hash function on their join attributes
Probing phase

- Read in each partition of R, stream in the corresponding partition of S, join
 - Typically build a hash table for the partition of R
 - Not the same hash function used for partition, of course!

\[\begin{align*}
R & \text{ partitions} \\
S & \text{ partitions}
\end{align*}\]
Example

- \(R(A), S(B) \)
- \(R \bowtie_{R.A=S.B}^{} S \)
- \(B(R) = 6 \)
- \(B(S) = 9 \)
- \(M = 4 \)
- Each page of \(R, S \) contains just one record
- Hash function for partitioning \(h = A \mod 3 \) (for \(R \)), \(B \mod 3 \) for \(S \)
- Hash function for probing \(h_2 = A \mod 2 \) (for \(R \)), \(B \mod 2 \) for \(S \)

1. Partitioning phase

- Input page for \(S_i \)
- Hash table for partition-0
- Join Result at the end

2. Probing phase

- 2-pass works here as at least one relation has \(\leq 2 \) pages in each partition

Probing for partition-0 and 1st page of \(S \) in partition 0, Similarly for other pages of \(S \), and for partitions 1 and 2

- M = 4 main memory pages
 - 1 for input, 3 for hash buckets
 - 1 for S pages (one by one), one for output, 3 for hash table for R-partition using \(h_2 \)
Performance of (two-pass) hash join

• If hash join completes in two passes:
 • I/O’s: $3 \cdot (B(R) + B(S))$
 • Memory requirement:
 • In the probing phase, we should have enough memory to fit one partition of R: $M - 1 > \frac{B(R)}{M-1}$
 • $M > \sqrt{B(R)} + 1$
 • We can always pick R to be the smaller relation, so:
 $$M > \sqrt{\min(B(R), B(S))} + 1$$
Generalizing for larger inputs

• What if a partition is too large for memory?
 • Read it back in and partition it again!
 • See the duality in multi-pass merge sort here?
Hash join versus SMJ

(Assuming two-pass)

- I/O’s: same
- Memory requirement: hash join is lower
 \[\sqrt{\min(B(R), B(S))} + 1 < \sqrt{B(R) + B(S)} \]
 - Hash join wins when two relations have very different sizes
- Other factors
 - Hash join performance depends on the quality of the hash
 - Might not get evenly sized buckets
 - SMJ can be adapted for inequality join predicates
 - SMJ wins if \(R \) and/or \(S \) are already sorted
 - SMJ wins if the result needs to be in sorted order
What about nested-loop join?

• May be best if many tuples join
 • Example: non-equality joins that are not very selective

• Necessary for black-box predicates
 • Example: WHERE user_defined_pred(R. A, S. B)
Other hash-based algorithms

• Just like Sorting!

• Union (set), difference, intersection
 • More or less like hash join

• Duplicate elimination
 • Check for duplicates within each partition/bucket

• Grouping and aggregation
 • Apply the hash functions to the group-by columns
 • Tuples in the same group must end up in the same partition/bucket
 • Keep a running aggregate value for each group
 • May not always work
Index-based algorithms
Selection using index

• Equality predicate: $\sigma_{A=v}(R)$
 • Use an ISAM, B$^+$-tree, or hash index on $R(A)$

• Range predicate: $\sigma_{A>v}(R)$
 • Use an ordered index (e.g., ISAM or B$^+$-tree) on $R(A)$
 • Hash index is not applicable

• Indexes other than those on $R(A)$ may be useful
 • Example: B$^+$-tree index on $R(A, B)$
 • How about B$^+$-tree index on $R(B, A)$?
Index versus table scan

Situations where index clearly wins:

- **Index-only queries** which do not require retrieving actual tuples
 - Example: $\pi_A(\sigma_{A>v}(R))$

- Primary index clustered according to search key
 - One lookup leads to all result tuples in their entirety
Index versus table scan (cont’d)

BUT(!):

• Consider $\sigma_{A>v}(R)$ and a secondary, non-clustered index on $R(A)$
 • Need to follow pointers to get the actual result tuples
 • Say that 20% of R satisfies $A > v$
 • Could happen even for equality predicates
• I/O’s for index-based selection: $\text{lookup } + 20\% \ |R|
• I/O’s for scan-based selection: $B(R)$
• Table scan wins if a block contains more than 5 tuples!
Index nested-loop join

\[R \bowtie_{R.A=S.B} S \]

- Idea: use a value of \(R.A \) to probe the index on \(S(B) \)
- For each block of \(R \), and for each \(r \) in the block:

 Use the index on \(S(B) \) to retrieve \(s \) with \(s.B = r.A \)

 Output \(rs \)

- I/O’s: \(B(R) + |R| \cdot (\text{index lookup}) \)

 - Typically, the cost of an index lookup is 2-4 I/O’s
 - Beats other join methods if \(|R| \) is not too big
 - Better pick \(R \) to be the smaller relation

- Memory requirement: 3
Example

- R.A values (1 R-tuple/page): 7, 2, 9, 8, 3
 - \(B(R) = |R| = 5\)
- B+-tree Index on S.B, 2 S-tuples/data page
 - Clustered, 3 levels, all index/data pages in memory
 - Assume foreign key S.B to primary key R.A
 - Assume each R.A joins with the same no. of S.B
 - \(|S| = 10, B(S) = 5\)
 - Assume matching data entries fit in one leaf
 - Each R tuple joins with 2 S tuples that fit in 1 S-page

- Algo:
 - For every page of R
 - Cost of R = \(B(R) = 5\)
 - For every tuple of R in that page
 - Send the value of R.A as the key value
 - Retrieve the matching S records from data pages pointed to by the matching index entries
 - Output all of them
 - For every R.A value, max cost of accessing matching S tuples = 3 (accessing leaves) + 1 (accessing data page)
 - Total cost of index-nested-loop-join = \(B(R) + |R| (3+1) = 5 + 5 * 4 = 25\)

Query: \(R \bowtie_{R.A=S.B} S\)
Zig-zag join using ordered indexes

\(R \bowtie_{R.A=S.B} S \)

- Idea: use the ordering provided by the indexes on \(R(A) \) and \(S(B) \) to eliminate the sorting step of sort-merge join
- Use the larger key to probe the other index
 - Possibly skipping many keys that don’t match

\[
\begin{align*}
\text{B}^+\text{-tree on } R(A) \\
1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 7 \rightarrow 9 \rightarrow 18
\end{align*}
\]

\[
\begin{align*}
\text{B}^+\text{-tree on } S(B) \\
1 \rightarrow 7 \rightarrow 9 \rightarrow 11 \rightarrow 12 \rightarrow 17 \rightarrow 19
\end{align*}
\]
Index-Only Plans

- A number of queries can be answered without retrieving any tuples from one or more of the relations involved if a suitable index is available.

```
SELECT E.dno, COUNT(*)
FROM Emp E
GROUP BY E.dno
```

```
SELECT E.dno, MIN(E.sal)
FROM Emp E
GROUP BY E.dno
```

```
SELECT AVG(E.sal)
FROM Emp E
WHERE E.age=25 AND E.sal BETWEEN 3000 AND 5000
```

- If you have an index on E.dno in the above query, no need to access data.
- For index-only strategies, clustering is not important.
Summary of techniques

• Scan
 • Selection, duplicate-preserving projection, nested-loop join

• Sort
 • External merge sort, sort-merge join, union (set), difference, intersection, duplicate elimination, grouping and aggregation

• Hash
 • Hash join, union (set), difference, intersection, duplicate elimination, grouping and aggregation

• Index
 • Selection, index nested-loop join, zig-zag join