
Transaction: Recovery
Introduction to Databases

CompSci 316 Fall 2022

Recovery

• Goal: ensure “A” (atomicity) and “D” (durability)

2

http://mnaxe.com/wp-content/uploads/2014/06/Notebook-Tablet-and-Laptop-Data-Recovery.jpg

Execution model

To read/write X
• The disk block containing X must be first brought

into memory
• X is read/written in memory
• The memory block containing X, if modified, must

be written back (flushed) to disk eventually

3

CPU
Memory
buffer

Disk

X
Y…

X
Y…

Failures

Commit ≠ Writing updates to disk!

• System crashes in the middle of a transaction T;
partial effects of T were written to disk
• How do we undo T (atomicity)?

• System crashes right after a transaction T commits;
not all effects of T were written to disk
• How do we complete T (durability)?

4

Naïve approach

• Force: When a transaction commits, all writes of
this transaction must be reflected on disk
• Without force, if system crashes right after T commits,

effects of T will be lost
FProblem: Lots of random writes hurt performance

• No steal: Writes of a transaction can only be flushed
to disk at commit time
• With steal, if system crashes before T commits but after

some writes of T have been flushed to disk, there is no
way to undo these writes

FProblem: Holding on to all dirty blocks requires lots of
memory

5

Logging

• Log
• Sequence of log records, recording all changes made to

the database
• Written to stable storage (e.g., disk) during normal

operation
• Used in recovery

• Hey, one change turns into two—bad for
performance?
• But writes are sequential (append to the end of log)
• Can use dedicated disk(s) to improve performance

6

Undo/redo logging rules

• When a transaction Ti starts, log 〈 Ti, start 〉

• Record values before and after each modification:
〈 Ti, X, old_value_of_X, new_value_of_X 〉
• Ti is transaction id and X identifies the data item

• A transaction Ti is committed when its commit log
record
〈 Ti, commit 〉 is written to disk

7

WAL

• Write-ahead logging (WAL): Before X is modified on
disk, the log record pertaining to X must be flushed
• Without WAL, system might crash after X is modified on

disk but before its log record is written to disk—no way to
undo

• No force: A transaction can commit even if its
modified memory blocks have not be written to disk
(since redo information is logged)

• Steal: Modified memory blocks can be flushed to disk
anytime (since undo information is logged)

8

See difference with naïve approach

Undo/redo logging example
9

T1 (balance transfer of $100 from A to B)

Memory buffer

A = 800
B = 400

Disk Log

Undo/redo logging example
10

T1 (balance transfer of $100 from A to B)

Memory buffer

A = 800
B = 400

Disk Log
〈 T1, start 〉

Undo/redo logging example
11

T1 (balance transfer of $100 from A to B)

Memory buffer

A = 800
B = 400

Disk Log
〈 T1, start 〉

read(A, a); a = a – 100;

Undo/redo logging example
12

T1 (balance transfer of $100 from A to B)

Memory buffer

A = 800
B = 400

Disk Log
〈 T1, start 〉

read(A, a); a = a – 100;

A = 800

Undo/redo logging example
13

T1 (balance transfer of $100 from A to B)

Memory buffer

A = 800
B = 400

Disk Log
〈 T1, start 〉

read(A, a); a = a – 100;

A = 800
write(A, a);

Undo/redo logging example
14

T1 (balance transfer of $100 from A to B)

Memory buffer

A = 800
B = 400

Disk Log
〈 T1, start 〉

read(A, a); a = a – 100;

A = 800
write(A, a);

〈 T1, A, 800, 700 〉

700

Undo/redo logging example
15

T1 (balance transfer of $100 from A to B)

Memory buffer

A = 800
B = 400

Disk Log
〈 T1, start 〉

read(A, a); a = a – 100;

A = 800
write(A, a);

〈 T1, A, 800, 700 〉

700read(B, b); b = b + 100;

Undo/redo logging example
16

T1 (balance transfer of $100 from A to B)

Memory buffer

A = 800
B = 400

Disk Log
〈 T1, start 〉

read(A, a); a = a – 100;

A = 800
write(A, a);

〈 T1, A, 800, 700 〉

700read(B, b); b = b + 100;

B = 400

Undo/redo logging example
17

T1 (balance transfer of $100 from A to B)

Memory buffer

A = 800
B = 400

Disk Log
〈 T1, start 〉

read(A, a); a = a – 100;

A = 800
write(A, a);

〈 T1, A, 800, 700 〉

700read(B, b); b = b + 100;

B = 400write(B, b);

Undo/redo logging example
18

T1 (balance transfer of $100 from A to B)

Memory buffer

A = 800
B = 400

Disk Log
〈 T1, start 〉

read(A, a); a = a – 100;

A = 800
write(A, a);

〈 T1, A, 800, 700 〉

700read(B, b); b = b + 100;

B = 400write(B, b);

〈 T1, B, 400, 500 〉

500

Undo/redo logging example
19

T1 (balance transfer of $100 from A to B)

Memory buffer

A = 800
B = 400

Disk Log
〈 T1, start 〉

read(A, a); a = a – 100;

A = 800
write(A, a);

〈 T1, A, 800, 700 〉

700read(B, b); b = b + 100;

B = 400write(B, b);

〈 T1, B, 400, 500 〉

500

700Steal: can flush
before commit

Undo/redo logging example
20

T1 (balance transfer of $100 from A to B)

Memory buffer

A = 800
B = 400

Disk Log
〈 T1, start 〉

read(A, a); a = a – 100;

A = 800
write(A, a);

〈 T1, A, 800, 700 〉

700read(B, b); b = b + 100;

B = 400write(B, b);

〈 T1, B, 400, 500 〉

500

700Steal: can flush
before commit

commit;

Undo/redo logging example
21

T1 (balance transfer of $100 from A to B)

Memory buffer

A = 800
B = 400

Disk Log
〈 T1, start 〉

read(A, a); a = a – 100;

A = 800
write(A, a);

〈 T1, A, 800, 700 〉

700read(B, b); b = b + 100;

B = 400write(B, b);

〈 T1, B, 400, 500 〉

500

700Steal: can flush
before commit

commit;

〈 T1, commit 〉

Undo/redo logging example
22

T1 (balance transfer of $100 from A to B)

Memory buffer

A = 800
B = 400

Disk Log
〈 T1, start 〉

read(A, a); a = a – 100;

A = 800
write(A, a);

〈 T1, A, 800, 700 〉

700read(B, b); b = b + 100;

B = 400write(B, b);

〈 T1, B, 400, 500 〉

500

700Steal: can flush
before commit

commit;

〈 T1, commit 〉
500

No force: can flush
after commit

Undo/redo logging example
23

T1 (balance transfer of $100 from A to B)

Memory buffer

A = 800
B = 400

Disk Log
〈 T1, start 〉

read(A, a); a = a – 100;

A = 800
write(A, a);

〈 T1, A, 800, 700 〉

700read(B, b); b = b + 100;

B = 400write(B, b);

〈 T1, B, 400, 500 〉

500

700Steal: can flush
before commit

commit;

〈 T1, commit 〉
500

No force: can flush
after commit

No restriction (except WAL) on when memory blocks can/should be flushed

Checkpointing

• Where does recovery start? Beginning of very large
log file?
• No – use checkpointing

Naïve approach:
• To checkpoint:
• Stop accepting new

transactions (lame!)
• Finish all active

transactions
• Take a database dump

• To recover:
• Start from last checkpoint

24

http://www.saintlouischeckpoints.com/wp-content/uploads/2013/08/dui20checkpoint200220172011.jpg

Fuzzy checkpointing

• Add to log records <START CKPT S> and <END CKPT>
• Transactions normally proceed and new transactions can

start during checkpointing (between START CKPT and END
CKPT)

• Determine S, the set of (ids of) currently active
transactions, and log 〈 START CKPT S 〉
• Flush all blocks (dirty at the time of the checkpoint) at

your leisure
• Log 〈END CKPT START-CKPT_location 〉
• To easily access <START CKPT> of an <END CKPT>

otherwise can read the log backword to find it

25

An UNDO/REDO log with checkpointing
Log records

<START T1>

<T1, A, 4, 5>

<START T2>

<COMMIT T1>

<T2, B, 9, 10>

<START CKPT(T2)>

<T2, C, 14, 15>

<START T3>

<T3, D, 19, 20>

<END CKPT>

<COMMIT T2>

<COMMIT T3>

26

• T2 is active, T1 already committed
– So <START CKPT (T2)>

• During CKPT,
– flush A to disk if it is not already there

(dirty buffer)
– flush B to disk if it is not already there

(dirty buffer)
– Assume that the DBMS keeps track of

dirty buffers

Announcements (Tues – Nov 29)

• Final gradiance-7 (transactions) due on Friday
12/2 10 pm
• Keep working on your projects – check the

post on Ed (what/when to submit and present)
• Several practice problems posted:
• Practice problems folder
• Sample Exams folder with several old exams (note:

syllabus and format may be different, 2020
semesters/exams were virtual for COVID)
• More practice problems on gradiance and on

transactions will be posted

27

Recovery using Log and CKPT:
Three steps at a glance
1. Analysis

• Runs backward, from end of log, to the <START CKPT> of the last <END
CKPT> record found (note this would be encountered “first” when reading
backwards)

• Goal: Reach the relevant <START CKPT> record

2. Repeating history (also completes REDO for committed transactions)
• Runs forward, from START CKPT, to the end of log
• Goal: (1) Repeat all updates from START CKPT (whether or not they already

went to the disk, whether or not they are from committed transactions), (2)
Build set U of uncommitted transaction to be used in UNDO step below

3. UNDO
• Runs backward, from end of log, to the earliest <START T> of the

uncomitted transactions stored in set U (note this may be before or after
the <START CKPT> found in analysis step)

• Goal: UNDO the actions of uncommitted transactions

28

End of Lecture on Tues 11/22
Start of Lecture on Tues 11/29

Recovery: (1) analysis and (2) repeating
history/REDO phase
• Need to determine U, the set of active transactions at time

of crash
• Scan log backward to find the last <END CKPT> record and

follow the pointer to find the corresponding
〈START CKPT S〉

• Initially, let U be S
• Scan forward from that start-checkpoint to end of the log

• For a log record 〈 T, start 〉, add T to U
• For a log record 〈 T, commit | abort 〉, remove T from U
• For a log record 〈 T, X, old, new 〉, issue write(X, new)
FBasically repeats history!

29

REDO is done and committed transactions are all in good shape now!
Still need to do UNDO for aborted/uncommitted transactions

Read again after
seeing the examples next

Recovery: (3) UNDO phase

• Scan log backward
• Undo the effects of transactions in U
• That is, for each log record 〈 T, X, old, new 〉 where T is in
U, issue write(X, old), and log this operation too (part of
the “repeating-history” paradigm)
• Log 〈 T, abort 〉 when all effects of T have been undone

FAn optimization
• Each log record stores a pointer to the previous log

record for the same transaction; follow the pointer chain
during undo

30

Read again after
seeing the examples next

Recovery: Example 1
Log records

<START T1>

<T1, A, 4, 5>

<START T2>

<COMMIT T1>

<T2, B, 9, 10>

<START CKPT(T2)>

<T2, C, 14, 15>

<START T3>

<T3, D, 19, 20>

<END CKPT>

<COMMIT T2>

<COMMIT T3>

31

• T1 has committed and writes are
already on disk

• After analysis, U = S = {T2}
• REDO all actions (values updated on disk)

• Write C = 15 (T2)
• UPDATE U to {T2, T3}
• Write D = 20 (T3)
• <COMMIT T2> found: U= {T3}
• <COMMIT T3> found: U = {}
• At the end U = empty, do nothing

(NO UNDO PHASE)

CRASH!!!

Assume every log record before crash is on disk

A
na

ly
si

s

RE
D

O

Log records

<START T1>

<T1, A, 4, 5>

<START T2>

<COMMIT T1>

<T2, B, 9, 10>

<START CKPT(T2)>

<T2, C, 14, 15>

<START T3>

<T3, D, 19, 20>

<END CKPT>

<COMMIT T2>

<COMMIT T3>

32Recovery: Example 2
• T1 has committed and writes are

already on disk
• After analysis, U = S = {T2}
• REDO all actions (values updated on disk)

• Write C = 15 (T2)
• UPDATE U to {T2, T3}
• Write D = 20 (T3)
• <COMMIT T2> found: U= {T3}

– not necessary to set B to 10 (before
END CKPT – already on disk)

• UNDO actions of T3 until its start
• Write D = 19 (T3)A

na
ly

si
s

RE
D

O

U
N

D
O

Assume every log record before crash is on disk

(up to this much log is seen)

CRASH!!!

Log records

<START T1>

<T1, A, 4, 5>

<START T2>

<COMMIT T1>

<T2, B, 9, 10>

<START CKPT(T2)>

<T2, C, 14, 15>

<START T3>

<T3, D, 19, 20>

<END CKPT>

<COMMIT T3>

<COMMIT T2>

33Recovery: Example 3
• T1 has committed and writes are

already on disk
• After analysis, U = S = {T2}
• REDO all actions (values updated on disk)

• Write C = 15 (T2)
• UPDATE U to {T2, T3}
• Write D = 20 (T3)
• <COMMIT T3> found: U= {T2}
• UNDO actions of T2 until its start

– Beyond <START CKPT>!
– Those changes already went to disk

• Write C = 14 (T2)
• Write B = 9 (T2)A

na
ly

si
s

RE
D

O

U
N

D
O

Assume every log record before crash is on disk

(up to this much log is seen)

CRASH!!!

In class we also did an example
of crash before <START T3>

Summary: Transactions

• Concurrency control
• Serial schedule: no interleaving
• Conflict-serializable schedule: no cycles in the

precedence graph; equivalent to a serial schedule
• 2PL: guarantees a conflict-serializable schedule
• Strict 2PL: also guarantees recoverability

• Recovery: undo/redo logging with fuzzy
checkpointing
• Normal operation: write-ahead logging, no force, steal
• Recovery: first redo (forward), and then undo

(backward)

34

