Transaction: Recovery

Introduction to Databases
CompSci 316 Fall 2022

DUKE

COMPUTER SCIENCE

|

Recovery

* Goal: ensure “A” (atomicity) and “D” (durability)

http://mnaxe.com/wp-content/uploads/2014/06/Notebook-Tablet-and-Laptop-Data-Recovery.jpg

Execution model

To read/write X

* The disk block containing X must be first brought
iInto memory

* Xis read/written in memory

* The memory block containing X, if modified, must
be written back (flushed) to disk eventually

CPU

Memory,
buffer

/]

— Disk
T
Y...
~ T — R S

Failures

Commit # Writing updates to disk!

» System crashes in the middle of a transaction T;
partial effects of T were written to disk

* How do we undo T (atomicity)?

* System crashes right after a transaction T commits;
not all effects of T were written to disk

* How do we complete T (durability)?

Naive approach

e Force: When a transaction commits, all writes of
this transaction must be reflected on disk

* Without force, if system crashes right after T commits,
effects of T will be lost

“ Problem: Lots of random writes hurt performance

* No steal: Writes of a transaction can only be flushed
to disk at commit time
* With steal, if system crashes before T commits but after

some writes of T have been flushed to disk, there is no
way to undo these writes

® Problem: Holding on to all dirty blocks requires lots of
memory

* Sequence of , recording all changes made to
the database

 Written to stable storage (e.g., disk) during normal
operation

* Used inrecovery

* Hey, one change turns into two—»bad for
performance?
 But writes are sequential (append to the end of log)
* Can use dedicated disk(s) to improve performance

Undo/redo logging rules

* When a transaction T, starts, log (T;, start)

e Record values before and after each modification:
(T, X old value of X, new value of X)
* T.is transaction id and X identifies the data item

* A transaction T;is committed when its commit log

record
(T.,, commit) is written to disk

WAL

* Write-ahead logging (\WAL): Before X is modified on
disk, the log record pertaining to X must be flushed

* Without WAL, system might crash after X is modified on
disk but before its log record is written to disk—no way to

undo
See difference with naive approach

* No force: A transaction can commit even if its

modified memory blocks have not be written to disk
(since redo information is logged)

* Steal: Modified memory blocks can be flushed to disk
anytime (since undo information is logged)

Undo/redo logging example

T, (balance transfer of $100 from A to B)

Memory buffer

_Disk Y [—_log 3
A =800
B =400

N— e

Undo/redo logging example

T, (balance transfer of $100 from A to B)

Memory buffer

_Disk Y f[—_Llog 3

(T, start)

Undo/redo logging example

T, (balance transfer of $100 from A to B)

read(A, a); a=a-100;

Memory buffer

_Disk Y f[—_Llog 3

(T, start)

Undo/redo logging example

T, (balance transfer of $100 from A to B)

read(A, a); a=a-100;

Memory buffer

A =800

_Disk Y f[—_Llog 3

(T, start)

Undo/redo logging example

T, (balance transfer of $100 from A to B)

read(A, a); a=a-100;

Memory buffer
write(A, a);

A =800

_Disk Y f[—_Llog 3

(T, start)

Undo/redo logging example

T, (balance transfer of $100 from A to B)

read(A, a); a=a-100;

Memory buffer
write(A, a);

A = 860

_Disk Y f—Llog 3
(T, start)
A =800 (T, A, 800,700)

Undo/redo logging example

T, (balance transfer of $100 from A to B)
read(A, a); a=a-100;

Memory buffer
write(A, a);

read(B, b); b = b + 100; A = 860

_Disk Y f—_Llog 3
(T, start)
(T, A, 800,700)

Undo/redo logging example

T, (balance transfer of $100 from A to B)
read(A, a); a=a-100;

Memory buffer
write(A, a);
read(B, b); b = b + 100; A = 860
B =400

_Disk Y f—_Llog 3
(T, start)
(T, A, 800,700)

Undo/redo logging example

T, (balance transfer of $100 from A to B)

read(A, a); a=a-100;

Memory buffer
write(A, a);
read(B, b); b = b + 100; A = 860
write(B, b); B =400

_Disk Y f—_Llog
(T, start)
A =800 (T, A, 800,700)

Undo/redo logging example

T, (balance transfer of $100 from A to B)

read(A, a); a=a-100;

Memory buffer
write(A, a);
read(B, b); b = b + 100; A = 860
write(B, b); B =460

< Disk N f[—_Llog 3
(T, start)

A =800 (T, A, 800,700)
B\: 400 - (T, B, 400,500)

Undo/redo logging example

T, (balance transfer of $100 from A to B)

read(A, a); a=a-100;

Memory buffer
write(A, a);
read(B, b); b = b + 100; A = 860
write(B, b); B =460

< Disk N f[—_Llog 3
(T, start)

A =860 (T, A, 800,700)
B\: 400 - (T, B, 400,500)

Undo/redo logging example

T, (balance transfer of $100 from A to B)
read(A, a); a=a-100;

Memory buffer
write(A, a);
read(B, b); b = b + 100; A = 860
write(B, b); B =460
commit;

< Disk N f[—_Llog 3
(T, start)

(T, A, 800,700)
B\: 400 - (T, B, 400,500)

Undo/redo logging example

T, (balance transfer of $100 from A to B)
read(A, a); a=a-100;

Memory buffer
write(A, a);
read(B, b); b = b + 100; A = 860
write(B, b); B =460
commit;

< Disk N f[—_log 3
(T, start)

(T, A, 800,700)
B=400 (Ty, B, 400,500)
(T, commit)

N— -

Undo/redo logging example

T, (balance transfer of $100 from A to B)
read(A, a); a=a-100;

Memory buffer
write(A, a);
read(B, b); b = b + 100; A = 860
write(B, b); B =460
commit;

< Disk N f[—_log 3
(T, start)

(T, A, 800,700)
B =460 500 (Ty, B, 400,500)
(T, commit)

N— -

Undo/redo logging example

T, (balance transfer of $100 from A to B)
read(A, a); a=a-100;

Memory buffer
write(A, a);
read(B, b); b = b + 100; A = 860
write(B, b); B =460
commit;

< Disk N f[—_log 3
(T, start)

(T, A, 800,700)
B =460 500 (Ty, B, 400,500)
(T, commit)

N— -

Checkpointing

* Where does recovery start? Beginning of very large
log file?
* No — use checkpointing
Naive approach:

* To checkpoint:
* Stop accepting new
transactions (lame!)

* Finish all active
transactions

* Take a database dump

* To recover:
* Start from last checkpoint

http://www.saintlouischeckpoints.com/wp-content/uploads/2013/08/dui20checkpoint200220172011.jpg

24

Fuzzy checkpointing

* Add to log records <START CKPT S> and <END CKPT>

* Transactions normally proceed and new transactions can
start during checkpointing (between START CKPT and END
CKPT)

* Determine S, the set of (ids of) currently active
transactions, and log (START CKPT S)

* Flush all blocks (dirty at the time of the checkpoint) at
your leisure

* Log (END CKPT START-CKPT location)

* To easily access <START CKPT> of an <END CKPT>
otherwise can read the log backword to find it

25

An UNDO/REDO log with checkpointing

<START T1> * T2is active, T1 already committed
<T1, A, 4,5> — S0 <START CKPT (T2)>
<START T2>
<COMMIT T1> .
* During CKPT,
<T2, B, 9, 10> g s
— flush A to disk if it is not already there
<START CKPT(T2)> (dirty buffer)
<12, C, 14,15> — flush B to disk if it is not already there
<START T3> (dirty buffer)
<13, D, 19, 20> — Assume that the DBMS keeps track of
<END CKPT> dirty buffers
<COMMIT T2>

<COMMIT T3>

Announcements (Tues — Nov 29)

* Final gradiance-7 (transactions) due on Friday
12/2 10 pm

« Keep working on your projects - check the
post on Ed (what/when to submit and present)

» Several practice problems posted:
 Practice problems folder

« Sample Exams folder with several old exams (note:
syllabus and format may be different, 2020
semesters/exams were virtual for COVID)

« More practice problems on gradiance and on
transactions will be posted

27

Recovery using Log and CKPT:
Three Steps at a glance End of Lecture on Tues 11/22

Start of Lecture on Tues 11/29
1. Analysis

* Runs backward, from end of log, to the <START CKPT> of the last <END

CKPT> record found (note this would be encountered “first” when reading
backwards)

Reach the relevant <START CKPT> record

2. Repeating history (also completes REDO for committed transactions)
* Runs forward, from START CKPT, to the end of log

(1) Repeat all updates from START CKPT (whether or not they already
went to the disk, whether or not they are from committed transactions), (2)
Build set U of uncommitted transaction to be used in UNDO step below

3. UNDO

* Runs backward, from end of log, to the earliest <START T> of the
uncomitted transactions stored in set U (note this may be before or after
the <START CKPT> found in analysis step)

UNDO the actions of uncommitted transactions

28

Recovery: (1) analysis and (2) repeating
history/REDO phase

* Need to determine U, the set of active transactions at time
of crash

* Scan log backward to find the last <END CKPT> record and
follow the pointer to find the corresponding
(START CKPT S)

Read again after
seeing the examples next

* Initially, let U be S

 Scan forward from that start-checkpoint to end of the log
* Foralogrecord (T,start),addTtoU
* Foralogrecord (T, commit | abort), remove T from U
* Foralogrecord (T, X, old, new), issue write(X, new)
Basically repeats history!

REDO is done and committed transactions are all in good shape now!

Still need to do UNDO for aborted/uncommitted transactions

Recovery: (3) UNDO phase

* Scan log backward
* Undo the effects of transactions in U
* Thatis, for each log record where Tisin
U, issue write(X, old), and log this operation too (part of
the “repeating-history” paradigm)
* Log when all effects of T have been undone

Read again after
seeing the examples next

< An optimization
* Each log record stores a pointer to the previous log
record for the same transaction; follow the pointer chain

during undo

Recovery: Example 1

<START T1>
<T1, A, 4, 5>
<START T2>
<COMMIT T1>
<T2, B, 9, 10>
—<START CKPT(T2)>
<T2, G, 14, 15>
<START T3>
<T3, D, 19, 20>
<END CKPT>
<COMMIT T2>
<COMMIT T3>
CRASH!!!

T1 has committed and writes are
already on disk

After analysis, U =S = {T2}

REDO all actions (values updated on disk)
Write C =15 (T2)

UPDATE U to {T2, T3}

Write D = 20 (T3)

<COMMIT T2> found: U= {T3}
<COMMIT T3> found: U = {}

At the end U = empty, do nothing
(NO UNDO PHASE)

Assume every log record before crash is on disk

31

Recovery: Example 2
* T1has committed and writes are

<START T1> already on disk
T, A, 4, 55 « After analysis, U =S ={T2}
<START T2> « REDO all actions (values updated on disk)
<COMMIT T1> * Write C=15(T2)
<T2,B, 9, 10> * UPDATE U to {T2, T3}
——+<START CKPT(T2)> * Write D =20(T3)
T2, C,14, 15> <COMMIT T2> found: U= {T3}

— not necessary to set B to 10 (before

<START T3> END CKPT - already on disk)
<T3, D, 19, 20> UNDO actions of T3 until its start
<END CKPT> * Write D =19 (T3)
<COMMIT T2>

ITT3> (up to this much log is seen)

CRASH!!!

Assume every log record before crash is on disk

33

Recovery: Example 3

* T1has committed and writes are

already on disk

<START T1> After analysis, U =S ={T2}
<T1, A, 4, 5> « REDO all actions (values updated on disk)
<START T2> * Write C=15(T2)
T — . UPPATE U to {T2, T3}
* Write D=20(T3)
<12,8,9,10> . <COMMIT T3> found: U= {T2}
g =T (T UNDO actions of T2 until its start
<12, C, 14, 15> — Beyond <START CKPT>!
<START T3> — Those changes already went to disk

Write C =14 (T2)

<T3, D, 19, 20>
Write B = 9 (T2)

<END CKPT>
<COMMIT T3>
ITT2>

In class we also did an example

to this much log is seen
(up > &) of crash before <START T3>

CRASH!!!

Assume every log record before crash is on disk

Summary: Transactions

* Concurrency control
* Serial schedule: no interleaving

* Conflict-serializable schedule: no cycles in the
precedence graph; equivalent to a serial schedule

* 2PL: guarantees a conflict-serializable schedule
* Strict 2PL: also guarantees recoverability

* Recovery: undo/redo logging with fuzzy
checkpointing
* Normal operation: write-ahead logging, no force, steal

* Recovery: first redo (forward), and then undo
(backward)

34

