
SQL: Recursion
Introduction to Databases

CompSci 316 Fall 2022

Announcements (Thu., Nov 30)

• Gradiance due Friday 12/2 10 pm

• Work on your projects – check out Ed post

• Check out practice problems and exams on Sakai

2

3

http://xkcdsw.com/1105

A motivating example

• Example: find Bart’s ancestors

• “Ancestor” has a recursive definition
• ! is "’s ancestor if

• ! is "’s parent, or
• ! is #’s ancestor and # is "’s ancestor

4

Parent (parent, child)

parent child

Homer Bart

Homer Lisa

Marge Bart

Marge Lisa

Abe Homer

Ape Abe
Bart Lisa

MargeHomer

Abe

Ape

Recursion in SQL

• SQL2 had no recursion
• You can find Bart’s parents, grandparents, great

grandparents, etc.
SELECT p1.parent AS grandparent
FROM Parent p1, Parent p2
WHERE p1.child = p2.parent
AND p2.child = 'Bart';

• But you cannot find all his ancestors with a single query

• SQL3 introduces recursion
• WITH clause

• Implemented in PostgreSQL (common table
expressions)

5

base case

Ancestor query in SQL3

WITH RECURSIVE
Ancestor(anc, desc) AS
((SELECT parent, child FROM Parent)
UNION
(SELECT a1.anc, a2.desc
FROM Ancestor a1, Ancestor a2
WHERE a1.desc = a2.anc))

SELECT anc
FROM Ancestor
WHERE desc = 'Bart';

6

Query using the relation

defined in WITH clause

Define

a relation

recursivelyrecursion step

Finding ancestors
• WITH RECURSIVE

Ancestor(anc, desc) AS
((SELECT parent, child FROM Parent)
UNION
(SELECT a1.anc, a2.desc
FROM Ancestor a1, Ancestor a2
WHERE a1.desc = a2.anc))
• Think of the definition as Ancestor = !(Ancestor)

7

parent child

Homer Bart

Homer Lisa

Marge Bart

Marge Lisa

Abe Homer

Ape Abe

anc desc

Homer Bart

Homer Lisa

Marge Bart

Marge Lisa

Abe Homer

Ape Abe

anc desc

anc desc

Homer Bart

Homer Lisa

Marge Bart

Marge Lisa

Abe Homer

Ape Abe

Abe Bart

Abe Lisa

Ape Homer

anc desc

Homer Bart

Homer Lisa

Marge Bart

Marge Lisa

Abe Homer

Ape Abe

Abe Bart

Abe Lisa

Ape Homer

Ape Bart

Ape Lisa

• “Fixed point”
• Start with Ancestor0 = ∅
• Apply the query Q again and

again, i.e.,
Q(AncestorT-1) = AncestorT

• Until Q(AncestorT) = AncestorT
i.e., no change
• If Q is monotone, unique fixpoint

Intuition behind fixed-point iteration

• Initially, we know nothing about ancestor-
descendent relationships

• In the first step, we deduce that parents and
children form ancestor-descendent relationships

• In each subsequent steps, we use the facts
deduced in previous steps to get more ancestor-
descendent relationships

• We stop when no new facts can be proven

8

Linear recursion
• With linear recursion, a recursive definition can make

only one reference to itself
• Non-linear

• WITH RECURSIVE Ancestor(anc, desc) AS
((SELECT parent, child FROM Parent)
UNION
(SELECT a1.anc, a2.desc
FROM Ancestor a1, Ancestor a2
WHERE a1.desc = a2.anc))

• Linear
• WITH RECURSIVE Ancestor(anc, desc) AS

((SELECT parent, child FROM Parent)
UNION
(SELECT anc, child
FROM Ancestor, Parent
WHERE desc = parent))

9

Gives the same answer

Linear vs. non-linear recursion

• Linear recursion is easier to implement
• For linear recursion, just keep joining newly generated

Ancestor rows with Parent
• For non-linear recursion, need to join newly generated

Ancestor rows with all existing Ancestor rows

• Non-linear recursion may take fewer steps to
converge, but perform more work
• Example: # → % → & → ' → (
• Linear recursion takes 4 steps

• Non-linear recursion takes 3 steps

• More work: e.g., $ → & has two different derivations

10

11

http://xkcdsw.com/3080

Mutual recursion example
• Table Natural(n) contains 1, 2, …, 100

• Which numbers are even/odd?
• An odd number plus 1 is an even number

• An even number plus 1 is an odd number

• 1 is an odd number

WITH RECURSIVE Even(n) AS
(SELECT n FROM Natural
WHERE n = ANY(SELECT n+1 FROM Odd)),

RECURSIVE Odd(n) AS
((SELECT n FROM Natural WHERE n = 1)
UNION
(SELECT n FROM Natural
WHERE n = ANY(SELECT n+1 FROM Even)))

12

Step 0: Odd = {}, Even = {}
Step 1: Odd = {1}, Even = {}
Step 2: Odd = {1}, Even = {2}
Step 3: Odd = {1, 3}, Even = {2}
Step 4: Odd = {1, 3}, Even = {2, 4}
….
….
Step 100: Odd = {1, 3, …, 99},

Even = {2, 4, …., 100}
Step 101: = Step 100

Base case

Order does not matter
Always look at the states of
all tables from last step

Semantics of WITH
• WITH RECURSIVE !' AS "', …,

RECURSIVE !(AS "(
";
•) and)!, … ,)" may refer to ,!, … , ,"

• Semantics
1. ,! ← ∅,… , ," ← ∅
2. Evaluate)!, … ,)" using the current contents of ,!, … , ,":
,!"#$ ←)!, … , ,""#$ ←)"

3. If ,%"#$ ≠ ,% for some 0
3.1. ,! ← ,!"#$, … , ," ← ,""#$
3.2. Go to 2.

4. Compute) using the current contents of ,!, …,"
and output the result

13

Mixing negation with recursion

• If # is non-monotone
• The fixed-point iteration may flip-flop and never converge

• There could be multiple minimal fixed points—we
wouldn’t know which one to pick as answer!

• Example: all users join either Jessica’s Circle or
Tommy’s
• Those not in Jessica’s Circle should be in Tom’s

• Those not in Tom’s Circle should be in Jessica’s
• WITH RECURSIVE TommyCircle(uid) AS

(SELECT uid FROM User WHERE

uid NOT IN (SELECT uid FROM JessicaCircle)),

RECURSIVE JessicaCircle(uid) AS

(SELECT uid FROM User WHERE

uid NOT IN (SELECT uid FROM TommyCircle))

14

Fixed-point iter may not converge
WITH RECURSIVE TommyCircle(uid) AS

(SELECT uid FROM User WHERE

uid NOT IN (SELECT uid FROM JessicaCircle)),

RECURSIVE JessicaCircle(uid) AS

(SELECT uid FROM User WHERE

uid NOT IN (SELECT uid FROM TommyCircle))

15

uid name age pop

142 Bart 10 0.9

121 Allison 8 0.85

uid uid

TommyCircle JessicaCircle
uid

142

121

uid

142

121

TommyCircle JessicaCircle

Bad query!

Multiple minimal fixed points
WITH RECURSIVE TommyCircle(uid) AS

(SELECT uid FROM User WHERE

uid NOT IN (SELECT uid FROM JessicaCircle)),

RECURSIVE JessicaCircle(uid) AS

(SELECT uid FROM User WHERE

uid NOT IN (SELECT uid FROM TommyCircle))

16

uid name age pop

142 Bart 10 0.9

121 Allison 8 0.85

uid

142

uid

121

TommyCircle JessicaCircle
uid

121

uid

142

TommyCircle JessicaCircle

Bad query!

Legal mix of negation and recursion

• Construct a dependency graph
• One node for each table defined in WITH
• A directed edge , → 1 if , is defined in terms of 1
• Label the directed edge “−” if the query defining , is

not monotone with respect to 1
• Legal SQL3 recursion: no cycle with a “−” edge
• Called stratified negation

• Bad mix: a cycle with at least one edge labeled “−”

17

Ancestor

Legal!

TommyCircle JessicaCircle

−

− Illegal!

Stratified negation example
• Find pairs of persons with no common ancestors
• Input: Parent(parent, child)

WITH RECURSIVE Ancestor(anc, desc) AS

((SELECT parent, child FROM Parent) UNION

(SELECT a1.anc, a2.desc

FROM Ancestor a1, Ancestor a2

WHERE a1.desc = a2.anc)),

Person(person) AS

((SELECT parent FROM Parent) UNION

(SELECT child FROM Parent)),

NoCommonAnc(person1, person2) AS

((SELECT p1.person, p2.person

FROM Person p1, Person p2

WHERE p1.person <> p2.person)

EXCEPT

(SELECT a1.desc, a2.desc

FROM Ancestor a1, Ancestor a2

WHERE a1.anc = a2.anc))

SELECT * FROM NoCommonAnc;

18

Ancestor

Person

NoCommonAnc

−

Old ancestor query

All people in the db

All Pairs of people

Except the people with a common ancestor

Evaluating stratified negation

• The stratum of a node ! is the maximum number of
“−” edges on any path from !
in the dependency graph
• Ancestor: stratum 0

• Person: stratum 0

• NoCommonAnc: stratum 1

• Evaluation strategy
• Compute tables lowest-stratum first

• For each stratum, use fixed-point iteration on all nodes
in that stratum

• Stratum 0: Ancestor and Person
• Stratum 1: NoCommonAnc

FIntuitively, there is no negation within each stratum

19

Ancestor

Person

NoCommonAnc

−

Practice problem: Recursion
• What does this query compute?
• Input: Edge(start, end) denoting directed edges in a

graph from u to v. Assume nodes take integer values.

• WITH RECURSIVE
Mystery(x, y) AS
((SELECT start, end FROM Edge)
UNION
(SELECT a1.x, a3.end
FROM Mystery a1, Edge a2, Edge a3
WHERE a1.y = a2.start and a2.end=a3.start))

SELECT y FROM Mystery m1, Mystery m2
WHERE m1.y = m2.x AND m1.x = 5 AND m2.y = 5

20

Practice problem: Recursion w/ Negation

• Input: Edge(start, end) denoting directed edges in a
graph from u to v. Assume nodes take integer
values.

Write a query to compute pairs of nodes (x, y) such
that there are no paths from x to y

21

Practice problem: Recursion w/ Negation

• Input: Edge(start, end) denoting directed edges in a
graph from u to v. Assume nodes take integer
values.

Write a query to compute pairs of nodes (x, y) such
that there are no paths from x to y

22

Summary

• SQL3 WITH recursive queries

• Solution to a recursive query (with no negation):
unique minimal fixed point

• Computing unique minimal fixed point: fixed-point
iteration starting from ∅
• Mixing negation and recursion is tricky
• Illegal mix: fixed-point iteration may not converge; there

may be multiple minimal fixed points

• Legal mix: stratified negation (compute by fixed-point
iteration stratum by stratum)

23

