
Functions and Data Fitting

August 31, 2022

1 Computations as Functions

Many computational tasks can be described by functions, that is, mappings from an input domain
A to an output domain Y .

Examples:

• A SPAM filter for email needs to be able to tell if a certain piece of email is SPAM or not. At its core is a function
f whose input is the email message and whose corresponding output is true (the message is SPAM) or false (not
SPAM). The domain A of f is the set of all possible emails (a very large set!), and the codomain is the binary set

Y = {true, false} ,

so we write
f : A→ Y and y = f(a) ∈ Y for a ∈ A.

Of course, it does not matter whether the values true and false are represented by strings, numerals (1 and 0, or
perhaps 1 and −1), or something else.

• A game console uses a camera or a depth sensor such as a Kinect device to track the motions of someone playing
a game of virtual tennis. At the core of this tracker is a function f that takes one video frame a from the camera
or depth sensor and outputs a vector y of real numbers that somehow describe the configuration of the player’s
body. For instance, the first two numbers y1, y2 in y could be the values in degrees of two angles that specify the
position of the player’s left upper arm relative to her left shoulder. Other numbers in y specify other angles of the
player’s skeleton. For this application, A is the set of all possible video frames, and

Y ⊆ Re ,

a subset of all real-valued vectors with e components.

• A system for medical diagnosis is based on a function f that takes the description a of a patient’s symptoms and
returns the most likely ailment y = f(a) out of a set Y of possible diseases.

• A speech recognition system is built around a function f that takes a snippet a of digitized audio samples and
returns a word y = f(a) out of a dictionary Y .

• A movie recommendation system relies on a function f that takes a list a of movies a certain person has seen in
the past and returns a recommendation y = f(a) that that person is likely to enjoy watching.

The virtual tennis task is one of regression because Y is a subset of real-valued vectors. All the
other problems are classification tasks, because Y is a categorical set, that is, a finite set of values
whose ordering does not matter.

Given one of these tasks, there are many ways in which a team of experts, mathematicians, and
computer scientists can go about designing the key function f . Traditional methods hand-craft the
function: Domain experts describe what is important for the task, and define a set of quantities
that need to be computed from the input a. Mathematicians come up with some formulas for these
quantities, and computer scientists write algorithms that compute numerical values based on these

1



formulas. Each of these aspects depends strongly on what the task is, and it is difficult to say
anything interesting about them abstractly.

More recently, Machine Learning (ML) has emerged as an alternative approach to hand design.
In ML, one provides a large number of examples of input-output pairs (a1, y1), . . . , (aN , yN ), and a
class F of allowed functions. A predefined algorithm then computes f ∈ F so that

yn ≈ f(an) for n = 1, . . . , N .

By itself, this is a data fitting problem, and you have seen several examples in your studies. For
instance, if A = R and Y = R, then F may be the set of all polynomials, and then one computes
the coefficients of a polynomial that satisfies the approximate equalities above.

Machine learning is harder than data fitting: We want f to do well not only on the
provided examples, but also on new inputs a. For the example with polynomials, we would
like

y ≈ f(a)

for any a ∈ A that we are likely to encounter in the future. Even formalizing exactly what this
means is a challenge, and we will spend quite a bit of time in this course doing so.

As you can imagine, things become trickier, even just for data fitting, as A becomes more
complex: How do you fit a function to a set of examples when the domain is the set of all possible
email messages? To insulate the complexities of the domain A from the problem of learning f ,
machine learning introduces the notion of a feature vector x. The input a is not fed directly to f .
Instead, some other function φ transforms a into a vector x ∈ X ⊆ Rd with a pre-specified number
d of components. The machine learning algorithm then takes a training set

T = {(x1, y1), . . . , (xN , yN )}

(where the outputs yn may be scalars or vectors) and computes a function h out of a predefined
set H called the hypothesis space such that

yn ≈ h(xn) for n = 1, . . . , N . (1)

In this way,
f(a) = h(φ(a)) ,

and the ML algorithm only sees vectors x of real numbers, rather than complicated objects such
as a.

For instance, in the case of SPAM filtering, one could number all the words in the English
dictionary from 1 to d (perhaps d = 20,000). Given an email message a, the corresponding feature
x could be a vector with d components, with component k specifying how many times word number
k in the dictionary occurs in a.1

Even if a itself is already a vector of numbers, like in the example of the body tracker above,
there are still reasons for transforming a to a different vector x. For instance, a may be unwieldily
large, and one wants to somehow compress the information it contains into a more parsimonious
representation.

1This would be a very sparse vector (that is, it would have very many zeros), because most English words do not
come up in any one email message.

2



The introduction of features adds a burden for the designer (what exactly does φ do?), but
allows machine learning to be agnostic of the specific structure of the domain A for the task at
hand. The domain X of h is always a subset of Rd, regardless of the application domain.2

The error in the approximation 1 is measured by a loss

`(yn, h(xn)) where the loss function ` has signature Y × Y → R+ .

This function depends on the application, and somehow measures how much we pay for a discrep-
ancy between the true value yn of the function output and the value h(xn) returned by h.

We will see various definitions for ` in this course. As a preliminary example, if Y is binary
(that is, if it contains two values), then a frequently used loss function is the zero-one loss,

`(y, ŷ) = `0-1(y, ŷ)
def
=

{
0 if y = ŷ
1 otherwise

This loss assigns a unit penalty to a classification mistake (y 6= ŷ) and a zero penalty to a correct
classification (y = ŷ).

To summarize, we consider the following two problems:

Assume that a training set

T = {(x1, y1), . . . , (xN , yN )} ⊂ Rd × Re

and a hypothesis space H of functions from Rd to Re are given.

• Data fitting selects a function h ∈ H that minimizes the average loss `(yn, h(xn)) over
the examples (xn, yn) in the training set T .

• Machine learning selects a function h ∈ H that minimizes the average loss `(y, h(x))
over previously unseen pairs (x, y).

The average loss

LT (h)
def
=

1

N

N∑
n=1

`(yn, h(xn))

of hypothesis h over the training set T is often called the empirical risk. The term “risk” comes
from actuarial applications, in which average loss relates to the risk that an insurance company
undertakes when it underwrites some item. The attribute “empirical” emphasizes that the average
is computed numerically from data.

Before we give a more precise meaning to the notion of minimizing an average loss “over pre-
viously unseen data,” the next Section examines data fitting in the familiar context of polynomial
approximation.

2Some approaches to machine learning consider the features x as given, both at training time and when the learned
system is deployed. Other approaches consider the design of φ as part of the problem. More about this point later
in the course.

3



2 Polynomial Data Fitting

Data fitting is a good warmup problem: It is not machine learning, as discussed earlier, but it
shares many characteristics with it. Examining how machine learning differs from data fitting will
also highlight the key challenges of the former. In addition, if the hypothesis space H is the set of
all polynomials and a quadratic loss (defined in Section 2.1 below) is used to measure the fitting
error, the resulting data fitting problem is easy to solve: The coefficients of a polynomial h are the
unknowns of the problem, and they appear linearly in h. Since the loss is quadratic, data fitting
becomes a quadratic optimization problem, and the optimal coefficients can be found by solving a
linear system of equations.

For simplicity, we will review these concepts first for polynomials in a single variable,

h : R→ R .

If the codomain is Re for some e > 1, we can view h as a collection of e polynomials, and treat
each polynomial separately, so there is nothing new there. If the domain is Rd for some d > 1,
the modifications are straightforward in principle. We will examine those separately, after we build
some intuition on the case d = e = 1.

2.1 Univariate Polynomials

A (real-valued) polynomial of degree k in the real-valued variable x is a linear combination of
powers of x, up to and including power k:

h(x) = c0 + c1x+ . . .+ ckx
k with ci ∈ R for i = 0, . . . , k and ck 6= 0 .

Given a training set
T = {(x1, y1), . . . , (xN , yN )} ⊂ R× R ,

the empirical risk on T is the average

LT (h)
def
=

1

N

N∑
n=1

`(yn, h(xn)) (2)

where the loss
`(y, y′) = (y − y′)2 (3)

is a quadratic function of its two arguments.
Since the second argument of ` is given value h(xn) in the n-th term of the summation in

equation 2, and since h is a linear function of its coefficients ci, the empirical risk is a quadratic
function of these coefficients. As a consequence, an optimal polynomial ĥ of degree up to a given
value k can be found by solving a system of linear equations. Specifically, the system is

Ac = b (4)

where the vector c gathers the unknown coefficients of the polynomial

c =

 c0
...
ck


4



and where the terms

A =

 1 x1 . . . xk1
...

...
...

1 xN . . . xkN

 and b =

 y1
...
yN


are computed from the training set. The matrix A is N × (k + 1) and the vector b has N entries.

Beware: The reason why this system is linear is that the loss is quadratic and the coefficients appear linearly
in a polynomial. Do not confuse this fact with the fact that polynomials are nonlinear functions of x: h is
linear in ci and nonlinear in x. In other words, fitting a nonlinear function of x can still be a linear problem
in c.

Also, while x and y are common names for unknown quantities in a problem, the values xn and yn are

known when the problem is to find the coefficients ci and the training set T is given. Thus, while x and y

are natural names for the independent variable and the value of y = h(x), the unknowns in the polynomial

data-fitting problem are the entries ci of c, while the quantities xn and yn are known.

From the theory of linear algebra, we know that if b is in the range of A, there are one (if A
is full rank) or infinitely many (if A is rank-deficient) solutions with zero loss (in other words, the
approximation is perfect). If b is not in the range of A, then the system 4 admits no solution.
However, in that case, the problem of solving system 4 is reinterpreted as the following minimization
problem, called the least-squares solution to system 4:

ĉ ∈ arg min
c
‖Ac− b‖2 . (5)

Notation: The solution ĉ is a member of (∈) the arg min, rather than equal to it. This means that while

there is a unique minimum value minc ‖Ac−b‖2, there are possibly (infinitely) many vectors c that achieve

that minimum value. Therefore, arg minc ‖Ac−b‖2 is generally a set of vectors, rather than a single vector,

and we are typically content with any element ĉ of that set. Thus, the solution to a data fitting problem is

not necessarily unique, even with a quadratic loss.

Since the squared norm of the difference between right-hand and left-hand side in row i of
system 4 is equal to `(yi − h(xi)) (check this!), we have that

LT (h) = ‖Ac− b‖2

and therefore the least-squares solution to system 4, defined by expression 5, minimizes the empirical
risk in definition 2 with the quadratic loss defined in equation 3.

The solution polynomial
ĥ(x) = ĉ0 + ĉ1x+ . . .+ ĉkx

k

has degree up to k, since ĉk may happen to be zero.

Unknown Maximum Degree If the maximum degree k is not given, we need some way to
determine it. In data fitting, we are only required to do well on the training set, so there is always
the option of setting

k = N − 1 .

With this choice, the system above has N equations in N unknowns, so there is always at least one
exact (that is, zero-residual) solution ĉ (and infinitely many if the equations are linearly dependent).

5



In other words, by making the degree of the polynomial high enough, we can achieve zero loss: Data
fitting has become interpolation and the plot of ĥ(x) goes exactly through all of the data points:

yn = ĥ(xn) .

More often, especially when the number N of data points is very large, we look for polynomials
of lower degree. For now, the question of what degree to choose is purely subjective, as the
following example illustrates. The theory of machine learning will make this and related concepts
more precise.

Example:

• In Figure 1, the same ten red points (the training set T ) are fit with polynomials of degree k = 1, 3, and 9. While
a low degree (k = 1) gives a poor fit, the fit with k = N − 1 = 9 seems overkill: In order to go exactly through the
ten points, the function ĥ oscillates up and down between them in ways that seem somewhat arbitrary.

In contrast, the intermediate degree k = 3 strikes a more pleasing balance between errors on the training set and
overall smoothness or simplicity of the polynomial. We say that the polynomial with k = 1 underfits and the one
with k = 9 overfits. Again, these notions will be made more quantitative later in this course.

0 1
0

5

0 1
0

5

0 1
0

5

k = 1 k = 3 k = 9

Figure 1: Ten data points are fitted with polynomials of varying degree k.

2.2 Multivariate Polynomials

In a multivariate polynomial, the independent variable is a vector x with d entries, rather than a
single scalar. The theory of polynomial fitting is not very different for these polynomials and is
outlined next.

A monomial of degree k′ in the d real variables x1, . . . , xd is a product of powers of these
variables:

xk11 . . . xkdd with ki ∈ N and k1 + . . .+ kd = k′ . (6)

Keep in mind that the set N of natural numbers includes zero, so not all variables need to appear
explicitly.

A polynomial of degree k is a linear combination of monomials of degrees up to and including
k:

h(x) =
∑
j

cjx
k
(j)
1

1 . . . x
k
(j)
d

d where x = [x1, . . . , xd]T and cj ∈ R for all j,

with the condition that the coefficient of at least one monomial of degree k is nonzero.3

3Without this condition, all polynomials could be said to have an arbitrarily large degree.

6



Given a training set
T = {(x1, y1), . . . , (xN , yN )} ⊂ Rd × R ,

the empirical risk

LT (h)
def
=

1

N

N∑
n=1

`(yn, h(xn)) where `(y, y′) = (y − y′)2

is still a quadratic function of the coefficients.4 For instance, if k = 2, then

h(x) = c0 + c1x1 + c2x2 + c3x
2
1 + c4x1x2 + c5x

2
2

is a linear function of the coefficients, so that LT is quadratic. If we are looking for a polynomial
of degree up to k, then the vector ĉ of the coefficients of ĥ can be found by solving the system

Ac = b

where

c =

 c0
...
c5


is the unknown and the terms

A =

 1 x11 x12 x211 x11x12 x212
...

...
...

...
...

...
1 xN1 xN2 x2N1 xN1xN2 x2N2

 and b =

 y1
...
yN


are assembled from the training set. In these expressions, xn1 and xn2 are the two components of
xn in this example with data dimensionality d = 2.

It would be straightforward to write code that fits a polynomial up to any degree to a set of
points in any dimension d. As we see in the next section, this code will not help much in machine
learning.

2.3 Limitations of Polynomial Fitting

In principle, polynomials up to any degree can be fitted to any number of points. As long as
the degree is high enough, the risk can be made as small as desired, including zero. In addition,
data fitting can also be applied to classification problems: Just associate a natural number to each
element of the codomain Y and proceed as above. Since ĥ(x) is not necessarily integer, round it to
the nearest element in Y for a categorical answer.

So, why don’t we just use polynomial data fitting all the time and call it quits? There are several
answers to this question.

4Indeed, all that has changed in these two expressions is a bold xn rather than an italic xn.

7



Complexity The first answer is complexity: In many cases, the sample space X ⊆ Rd has a high
dimensionality d. The SPAM filter example is a case in point, with d of the order of thousands or
tens of thousands (one dimension or so for each word in the English dictionary). As d increases,
the number of coefficients in a polynomial of degree k in d variables grows very fast.

Specifically, the argument in Appendix A shows that there are

m(d, k) =

(
d+ k

k

)
possible monomials of degree up to k in d variables. The Appendix also shows that if the degree k
is kept fixed, this function is O(dk), and if the dimensionality d is kept fixed instead, it is O(kd).
Also, if both d and k grow at the same rate, the function m is O(4d/

√
d). Thus, the rate of growth

of m is polynomial when either d or k is kept fixed, and exponential if they are both allowed to
grow at the same rate.

Thus, polynomial fitting becomes unwieldy for large d except when k = 1 or d = 1. The case
k = 1 involves fitting an affine function5, and the number of coefficients to estimate is then O(d)
(and more precisely d+ 1), which is very manageable. The case d = 1, regardless of the value of k,
is the univariate case considered in Section 2.1, in which the number of coefficients to estimate is
O(k) (in fact, we know it’s k + 1), also entirely manageable.

For higher-degree polynomials, the number of coefficients grows at least polynomially (with
power k) with the number d of variables. As d grows, the number N of data samples needed to
estimate the unknowns grows as well (for instance, we want N about as large as m(d, k) for an
exact fit), and we soon run out of data. In other words, the sample complexity of polynomial data
fitting grows polynomially with the dimensionality d of the sample space X, and for all but the
lowest degrees the cost of collecting and annotating data samples6 is prohibitive.

Overfitting Figure 1 hinted at a second reason why polynomial fitting won’t do: In order to
reduce the loss we need to increase the degree, and as we do so the polynomial swings more wildly
between training samples. This difficulty becomes important for machine learning, in contrast with
data fitting: In machine learning, we want ĥ(x) to be a good predictor of y even at previously
unseen data points, that is, at values of x that were not part of the training set T . While it is still
unclear what this means exactly, it should be intuitively clear that the swings of a polynomial are
not beneficial: After all, we hope that the training set T is enough to tell what will happen at the
new points, so a tamer fit (such as the one for k = 3 in the Figure) would seem to be a safer bet.
This is because the oscillations come from the polynomial, that is from our choice of hypothesis
space H, rather than from the data. While a polynomial (of degree 3) happens to do well in the
figure, it is not clear that, given some training set T , the degree of the polynomial can be made large
enough to obtain a satisfactorily small risk, without at the same time causing excessive overfitting.
In other words, polynomials are not necessarily a natural choice of functions for any given fitting
(or machine learning) problem. In fact, polynomials are used very rarely as the hypothesis space
of a machine learning problem. The lone exception is affine polynomials (k = 1), which are very
commonly used.

5Affine means linear plus a constant.
6Annotating a data point x means to specify what the corresponding value y is. Typically, this annotation is done

manually by a person. More on this point later.

8



The Curse of Dimensionality The two factors above, complexity and overfitting, are polynomial-
specific manifestations of a more fundamental and general difficulty. For the training set T to be
representative of all possible data in the sample space X ⊂ Rd, we would like the data points
x1, . . . ,xN to “fill X nicely.” For instance, in Figure 1, the red points are taken at regular in-
tervals, and are relatively closely spaced. Not much can really happen between two consecutive
points, as long as the underlying phenomenon that generates the data is sufficiently smooth. As
the dimensionality of X increases, however, it becomes very difficult very soon to “fill X nicely.”
Even when X is the unit cube in Rd, that is, X = [0, 1]d, if we wanted to sample X with a grid with
only 10 points in each dimension we would end up with 10d grid points: The number of grid points
grows exponentially with d if the number of grid points per dimension is fixed. Considering that the
number of atoms in the universe is around 1080, we see that grids become completely infeasible for
all but the smallest values of d. Even with d = 10 we would already need tens of billions (1010) of
data points. This fundamental difficulty is called the curse of dimensionality. Avoiding the curse
calls for new ideas.

9



Appendix

A Counting Monomials

There are

m(d, k) =

(
d+ k

k

)
possible monomials of degree up to k in d variables.

Proof. First, for any nonnegative integer k′ ≤ k we can write the monomial in expression 6 as
follows:

1k0 xk11 . . . xkdd where k0 + . . .+ kd = k

and where the powers ki are nonnegative (but possibly zero) integers. This expression corresponds
bijectively to the following string of d+ k bits:

0, . . . , 0︸ ︷︷ ︸
k0

, 1, 0, . . . , 0︸ ︷︷ ︸
k1

, 1, . . . , 1, 0, . . . , 0︸ ︷︷ ︸
kd

.

This string is constructed by writing a block of ki consecutive zeros for each ki with i = 0, . . . , d,
and then separating adjacent blocks with a single 1.

“Corresponds bijectively” in the sentence above means that there is exactly one such string for
each such monomial, and counting these strings is easier than counting monomials directly. This
is because there is one such string for each way of selecting the d positions for the d ones among
all k + d positions. This immediately yields the desired expression for m(d, k). ∆

Rates of Growth How fast does the number m(d, k) of coefficients grow with the degree k or
the number of variables d? We can write

m(d, k) =

(
d+ k

k

)
=

(d+ k)!

d!k!
=

(d+ k) (d+ k − 1) . . . (d+ 1)

k!
.

Consider first keeping k fixed and varying d. Then, the denominator of the last expression above
is a constant, and the numerator is the product of k factors, each of order d. Thus, if k is kept
fixed then m(d, k) is O(dk). Since

(
d+k
k

)
=
(
k+d
d

)
, we have that m(d, k) = m(k, d), and therefore,

by symmetry, if d is kept fixed then m(d, k) is O(kd). In either case we have polynomial growth,
and the growth rate is high if the fixed parameter is large.

What if both d and k grow at the same rate? Using the Stirling approximation to the factorial

q! ≈
√

2πq
(q
e

)q
as q →∞

in the expression

m(d, k) =

(
d+ k

k

)
=

(d+ k)!

d! k!

with k = d easily yields that m(d, d) is O(4d/
√
d), an exponential rate of growth.

10


	Computations as Functions
	Polynomial Data Fitting
	Univariate Polynomials
	Multivariate Polynomials
	Limitations of Polynomial Fitting

	Counting Monomials

