
Binary Support Vector Machines for Classification

Carlo Tomasi

October 19, 2022

Any linear binary classifier separates the space Rd of all data points xn into two half-spaces,
ideally splitting data points with positive label yn = 1 from those with negative label1 yn = −1. Of
course, the joint model p(x, y) from which the data are drawn may not be linearly separable. As a
consequence, linear classifiers are typically formulated so as to allow for some misclassification.

Consider placing a decision boundary (a hyperplane in Rd) where it splits as much of the data
as possible correctly into the two classes. After this choice is made, there is often still quite a bit of
freedom on the exact position and orientation of the boundary: Especially when the dimensionality
is large, it is often possible to translate and rotate the hyperplane somewhat, without changing the
label that the classifier assigns to any of the training data. Placing the boundary in just the right
place, in the face of this freedom, is important, and drives the generalization performance of the
classifier. In other words, moving the hyperplane around a bit may not change the error rate on
the training set, but it may change that on previously unseen data.

A logistic-regression classifier chooses where to place the decision boundary somewhat arbitrar-
ily, as its loss function penalizes every training sample in the training set T according to how close
it is to the separating hyperplane, and on which side of it. However, once the boundary splits T
as well as possible, the points in T that end up being close to the boundary are the only data that
really matter when deciding where exactly the boundary should be. Points that are very far away
from the boundary should have little or no say. This is particularly important in the presence of
outliers, which, loosely speaking, are rare data samples where x is distant from more typical values.
Figure 1 illustrates that even a single outlier can shift the boundary of a logistic-regression classifier
quite a bit, and this seems undesirable, since the exact position of the boundary affects the output
of the classifier only for points that are near it.

A different family of classifiers, called Support Vector Machines (SVMs), still uses a separating
hyperplane as the decision boundary. Thus SVMs, in their simplest form, are linear classifiers as
well. However, after the hyperplane is placed so that it separates the data in T as well as possible,
it then “pays attention” only to training samples that are either incorrectly classified or correctly
classified but very close to the hyperplane.

To achieve this effect, the loss function used in SVMs insists that the decision boundary has as
wide a margin on both of its sides as possible. A margin is a slab of space (that is, a hyperplane
with some thickness; the space between two parallel hyperplanes) that has as few training samples
as possible. By leaving this nearly empty space around the decision boundary, SVMs reduce the
probability that a previously unseen sample falls close to this boundary, and therefore possibly on
the wrong side of it.

1The specific choice of label values is conceptually irrelevant. For support vector machines, labeling negative
samples with −1 rather than 0 simplifies the math considerably.

1



Figure 1: The color of dots in these two diagrams denotes true class membership, and hollow
dots are samples that the logistic-regression classifier (whose decision boundary is the red line)
misclassifies. The training sets in the two diagrams are identical, except for a single data sample
added to the one on the right, close to the top-left corner. This distant sample is enough to shift
the decision boundary quite a bit.

As a result, SVMs tend to generalize quite well, at the cost of solving a more involved optimiza-
tion problem. Specifically, learning an SVM turns out to be a strictly convex quadratic program
with a unique solution. Fairly efficient algorithms exist for these optimization problems, but they
do take longer than solving an unconstrained quadratic minimization problem of the type that
logistic-regression classifiers do.

The superiority of margin-based classifiers over logistic regression classifiers is in large part
theoretical when the training set has a nontrivial size. For large training sets, the performance of
logistic-regression classifiers is quite similar to that of SVMs in practice. Instead, what made SVMs
popular is that they make it possible to go well beyond linear classification boundaries through what
are called kernels, which allow the decision boundary to be of nearly arbitrary complexity, as we
will see in a later note.

The next two sections discuss the geometry of high-margin binary classifiers and the attending
loss and risk function. Minimizing the empirical risk thus defined leads to what are called soft
SVMs, to distinguish them from the “hard” version, which makes the unrealistic assumption that
training data are linearly separable.

1 The Geometry of High-Margin Classifiers

Separating Hyperplane Consider a binary classification problem with data space X = Rd and
label space Y = {−1, 1}. A hyperplane in X can be represented by an equation of the form

nTx + c = 0 with ‖n‖ = 1 , (1)

2



where n is a unit vector in Rd and c is a scalar. The decision rule

ŷ = h(x) = sign(nTx + c) (2)

classifies the sample (x, y) correctly (that is, ŷ = y) when2

nTx + c ≥ 0 if y = 1

and
nTx + c ≤ 0 if y = −1 .

These two inequalities can be written compactly as follows:

y(nTx + c) ≥ 0 (3)

since y ∈ {1,−1}.

Margin The margin of a sample (x, y) ∈ X × Y with respect to the separating hyperplane with
parameters v = (n, c) is the real value

µv(x, y)
def
= y (nTx + c) .

Thus, the margin of a sample is the left-hand side of the inequality 3, that is, the slack by which
the inequality is satisfied. A high-margin sample is well inside the correct decision region of the
classifier. Similarly, a sample with a large negative margin is well inside the wrong region.

Geometrically, for a correctly classified sample, for which therefore ŷ = y, the margin is the
distance of the data point from the separating hyperplane, as we saw when we discussed the
geometry of linear classifiers. For an incorrectly classified sample, the margin is the negative of this
distance. Thus, the margin of a sample is its signed distance from the decision boundary, which we
called ∆(x) in that discussion.

The margin µv(T ) of a training set

T = {(x1, y1), . . . , (xN , yN )}

is the smallest margin of any of its samples:

µv(T )
def
= min

(x,y)∈T
µv(x, y)

and the hyperplane with parameters v is said to linearly separate training set T if

µv(T ) > 0 .

The training set T is linearly separable if there exists a hyperplane that linearly separates it.

2We deem the classification of a sample on the decision boundary to be correct regardless of its true label.

3



2 Loss and Risk

The Hinge Loss A separating hyperplane for which the given training set T has a large (positive)
margin is likely to generalize well. This is because to the extent that the training set is representative
of the true distribution of the data, if few training samples fall close to the boundary then few
samples will fall close to it even at inference time, and are therefore less likely to be misclassified.

However, a training set T may not be linearly separable at all, let alone with a large margin:
No matter where one places a separating hyperplane, some of the samples in T may end up falling
on the wrong side of it. The SVM loss function is defined to encourage the training algorithm to
seek separating hyperplanes that achieve large margins for most of the data and as few negative
margins as possible on the training set.

Specifically, consider some strictly positive reference margin3 µ∗ > 0, and define the hinge loss

`v(x, y) =
1

µ∗
max{0, µ∗ − µv(x, y)} .

Training samples with
µv(x, y) ≥ µ∗

are classified correctly with a margin at least µ∗, and incur zero hinge loss. On the other hand,
when

µv(x, y) < µ∗ ,

the training sample (x, y) falls short of the reference margin µ∗, and the hinge loss is strictly
positive. Specifically, if 0 < `v < 1, the training sample is correctly classified but by a smaller
margin. When `v = 1, the sample is on the separating hyperplane, and when `v > 1, the sample is
misclassified. Figure 2 illustrates.

The Empirical Risk A good SVM classifier has both a small average hinge loss (i.e., a small
risk) and a large reference margin µ∗. To define a risk function that captures this criterion, the
separating hyperplane in equation 1 is rescaled as follows:

wTx + b = 0 with w =
n

µ∗
, b =

c

µ∗

where n is a unit vector, so that the norm of the hyperplane coefficient vector w is 1/µ∗: The
smaller the norm of w, the larger the margin.

Then, the margin of sample (x, y) is

µ(w,b)(x, y) = y (nTx + c) = µ∗y (wTx + b) . (4)

With these definitions, the hinge loss can be rewritten as

`(w,b)(x, y) = max{0, 1− y(wTx + b)} . (5)

The empirical risk function is defined as the sum of half of ‖w‖2 = 1
(µ∗)2 and a multiple of the

average hinge loss:

LT (w, b)
def
=

1

2
‖w‖2 +

C0

N

N∑
n=1

`(w,b)(xn, yn) (6)

3The margin µv(x, y) is a property of sample (x, y) and the classifier with parameters v. The reference margin
µ∗ is a parameter of the classifier alone.

4



n

reference 
margin

separating 
hyperplane

ŷ = 1= −1ŷ

1

µ (x, 1)v
µ*

1

µ*µ (x, -1)v

reference 
margin

l (x, -1)v

l (x, 1)v

Figure 2: Top: The white area is the decision region for label 1, and the gray area is that for label
−1. The unit vector n is perpendicular to the decision boundary and points towards the region for
label 1. Middle: The hinge loss `v(x, 1) for data whose true label is 1 is plotted as a function of
the margin µv(x, 1). The loss is equal to zero at the reference margin µ∗ and beyond, and is equal
to one on the decision boundary. Bottom: The function that relates the hinge loss `v(x,−1) to the
margin µv(x,−1) for data whose true label is −1 is the same as that for true label 1. However, it
is plotted here with the abscissa pointing to the left so that it relates more directly to the diagram
at the top. Either way, even correctly classified samples can incur some loss, if their margin is too
small.

5



where C0 is some strictly positive constant.
The ERM classifier (w∗, b∗) = ERMT (w, b) implicitly finds a reference margin µ∗ that strikes a

balance between the two terms of the risk LT (w, b): Reducing the norm of w increases the reference
margin µ∗ and reducing the average hinge loss decreases either the number of samples that violate
the margin or the amount by which they violate it, or both. However, these two terms are in conflict
with each other, because a wider reference margin causes more training samples to fall short of
it. By changing the value of C0, one can tune the trade-off implied by the two terms of LT (w, b).
Specifically, a large value of C0 emphasizes the hinge loss and therefore leads to a narrower reference
margin (bigger ‖w‖, because the influence of the first term of LT (w, b) is reduced relative to that
of the second) and fewer and/or smaller violations of the margin. Decreasing C0 has the opposite
effect. A good value for C0 for a specific problem can be found by cross-validation.

3 Soft Linear Support Vector Machines

The ERM classifier
(w∗, b∗) = ERMT (w, b) = arg min

(w,b)
LT (w, b) (7)

where the empirical risk LT is defined in equation 6,

LT (w, b)
def
=

1

2
‖w‖2 +

C0

N

N∑
n=1

max{0, 1− yn(wTxn + b)} ,

is called a Soft Linear Support Vector Machine (Linear Soft SVM). The qualifier “linear” reminds
us that these SVMs are linear classifiers, to distinguish them from the nonlinear versions that we
will see when we introduce kernels. The term “soft” refers to the fact that the training set is not
required to be linearly separable: Even the best separating hyperplane may still misclassify some
samples. The formulation of SVMs would be simpler for linearly separable training sets, because it
would then be possible to make the second term of the risk vanish. However, these “hard” SVMs
are not too useful in practice, since it is difficult to guarantee linear separability. We may drop
both qualifiers when there is no ambiguity.

Since the norm squared (the first term int he expression of the risk) is a strictly convex function
of w and the hinge loss is weakly convex in both w and b, the risk LT (w, b) is strictly convex, and
the solution to this minimization problem is therefore unique. Uniqueness of the solution is one
big advantage of SVMs, which however these classifiers share with the regularized version of the
logistic regression classifier. We will see other advantages of SVMs soon.

Computing a Soft Linear SVM Suppose that we are given a training set

T = {(x1, y1), . . . , (xN , yN )}

with xn ∈ X = Rd and yn ∈ Y = {−1, 1}. We are also given a value for C0, a positive real number
that perhaps is to be refined through cross-validation. How can we compute the parameters w∗ ∈ Rd
and b∗ ∈ R that specify the separating hyperplane for the corresponding soft SVM? That is, how
do we find ERMT (w, b) for this machine learning problem?

6



Conceptually, the simplest, although by no means the most efficient, method for solving this
convex optimization problem is to use gradient descent, or even Stochastic Gradient Descent (SGD).
While the derivative of the hinge function

ρ(z) = max{0, z}

is undefined at the origin, we know that gradient descent and SGD can be used with sub-gradients,
and that we can use any sub-gradient where the gradient is undefined. The modification then is
very simple. If we choose zero as the sub-derivative of ρ(z) for z = 0, we can write

ρ′(z) =

{
1 for z > 0
0 elsewhere.

(8)

The risk LB(w, b) can be written as follows for a batch B of M samples with 1 ≤M ≤ N :

LB(w, b) =
1

2
‖w‖2 +

C0

M

M∑
n=1

ρ(1− yn(wTxn + b))

and the sub-gradient is then

∂LB
∂w

= w − C0

M

M∑
n=1

ρ′(1− yn(wTxn + b)) ynxn

∂LB
∂b

= −C0

M

M∑
n=1

ρ′(1− yn(wTxn + b)) yn .

Note that the quantity ρ′(1− yn(wTxn + b)), in spite of its complex formula, is equal to either
0 or 1 (equation 8), so the sub-gradient can be computed easily.

7



Appendix

A The Dual Formulation of Soft Linear SVMs

It is mathematically possible to write necessary and sufficient conditions for a minimum of LT (w, b)
by reformulating the unconstrained optimization problem in equation 7 as a constrained problem via
the introduction of so-called slack variables ξn for n = 1, . . . , N . It then turns out that minimizing
the risk LT over w and b is the same as minimizing the function

f(w, b, ξ)
def
=

1

2
‖w‖2 +

C0

N

N∑
n=0

ξn (9)

over w, b, and ξ = (ξ1, . . . , ξN ) with the additional constraint

ξn ≥ `(w,b)(xn, yn) for n = 1, . . . , N . (10)

However, proving this equivalence and then developing necessary and sufficient conditions for
this problem, which are called the Karush-Kuhn-Tucker (KKT) conditions, would take us far into
the field of convex programming. This is in fact the traditional approach to SVMs, and may well
be worthwhile studying if you plan to specialize in this type of predictor.

8


	The Geometry of High-Margin Classifiers
	Loss and Risk
	Soft Linear Support Vector Machines
	The Dual Formulation of Soft Linear SVMs

