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As we saw in the previous note, a Support Vector Machine (SVM) is a linear classifier with
decision rule

ŷ = h(x) = sign(w∗Tx + b∗) . (1)

The parameters w∗, b∗ of this rule are the solution to the problem

(w∗, b∗) = ERMT (w, b) = arg min
(w,b)

LT (w, b) (2)

where the empirical risk LT is

LT (w, b)
def
=

1

2
‖w‖2 +

C0

N

N∑
n=1

max{0, 1− yn(wTxn + b)} . (3)

The vector w∗ that determines the orientation of the optimal decision hyperplane enjoys a rather
surprising property: It is a linear combination of the data points xn in the training set T . This
property is encapsulated by the so-called representer theorem, which is formulated and proven next,
and will be shown to have far-reaching consequences.

1 The Representer Theorem

The gist of the representer theorem is that there exist coefficients β1, . . . , βN such that

w∗ =
N∑

n=1

βnxn .

This is a rather striking result, since the vectors x1, . . . ,xN do not generally span all of Rd+1,
especially if you consider that it is entirely possible that there are fewer data points than dimensions,
N � d. For instance, if the data points xn are color images, they can have millions of pixels, with
each pixel color represented by three numbers, so d is in the many millions in that case. The
number N of training images, on the other hand, is often much smaller.

While the representer theorem may seem to be just a theoretical curiosity, we will see soon
that it has profound practical consequences, especially when combined with the fact that a large
fraction of the βn turn out to be zero. Let us first formulate and prove the result itself.

The representer theorem holds for a broader class of SVMs than we have seen so far, namely, it
holds for all so-called kernel SVMs, which we will look at later on. In order to be able to use this
theorem in this broader setting, we first abstract the structure of the SVM optimization problem in
equations 2, 3 into more general notation, and prove the theorem for this more general formulation.
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General Formulation of the Representer Theorem Rewrite the training risk in equation 3
as follows:

LT (w, b) =
1

2
‖w‖2 +

C0

N

N∑
n=1

max{0, 1− yn(wTxn + b)}

= R(‖w‖) + S
(
wTx1 + b, . . . , wTxN + b

)
.

In the specific case, the last expression can be obtained from the one before it by the following
definitions:

R(a) =
1

2
a2

S(a1, . . . , aN ) =
C0

N

N∑
n=1

max{0, 1− ynan} .

Please check that this is indeed the case.
However, we will prove the representer theorem not only for these specific definitions, but also

in the more general case where the functions R and S satisfy the following weaker properties:

• R is any strictly increasing function from R+ to R.

• S is any function from RN to R.

Proving the representer theorem in this more general formulation will become useful later on.
Since the representer theorem is a statement about w, the value of the bias term b is irrelevant.

We remove it from consideration by decomposing the minimization problem in equation 2 into two
steps:1 First minimize with respect to w and then with respect to b:

(w∗, b∗) = arg min
b

min
w

LT (w, b) .

In this formulation, the minimization with respect to w considers b to be fixed, and we can restrict
our attention to the subproblem

w∗(b) = arg min
w

LT (w, b)

where b is an arbitrary constant.
To summarize what we are about to prove, the representer theorem states that if a function has

the form
L(w, b) = R(‖w‖) + S

(
wTx1 + b, . . . , wTxN + b

)
(4)

where R and S satisfy the general properties listed above and b is a fixed real number, the value
w∗ of w that minimizes L(w, b) is a linear combination of the data points x1, . . . ,xN :

w∗ =
N∑

n=1

βnxn .

1This decomposition is just a way to think about optimization, and not how optimization is actually done in
practice.

2



Proof of the Representer Theorem Let X be the subspace in Rd spanned by the vectors
x1, . . . ,xN , and let X⊥ be the orthogonal complement of X in Rd. That is, X⊥ is the set of all
vectors in Rd that are orthogonal to all the vectors in X . Then any vector can be written as a
linear combination of vectors that jointly span X and X⊥, because these vectors then span all of
Rd. So we can write the optimal solution as

w∗ =

N∑
n=1

βnxn + u for some u ∈ X⊥

without loss of generality.2 The summation is in X and u is in X⊥. Proving the representer theorem
amounts to showing that u = 0, because then w∗ is in X .

By contradiction, suppose that u 6= 0, and consider the vector

w = w∗ − u =
N∑

n=1

βnxn , (5)

which is the component of w∗ in X . The vectors w and u are orthogonal to each other because
w ∈ X and u ∈ X⊥. Therefore, from Pythagoras’s theorem, we have

‖w∗‖2 = ‖w‖2 + ‖u‖2 ,

and the assumption that u is nonzero then leads to the inequality

‖w‖ < ‖w∗‖ .

Since the function R is strictly increasing, this in turn implies that

R(‖w‖) < R(‖w∗‖) . (6)

In addition, since u is orthogonal to every xn, we can write the following for every n:

wTxn + b = (w∗ − u)Txn + b = (w∗)Txn − uTxn + b = (w∗)Txn + b .

The first equality in this chain uses the definition (5) of w, the second equality merely distributes
xn, and the last uses orthogonality of u and xn, that is, uTxn = 0. Therefore,

S
(
wTx1 + b, . . . , wTxN + b

)
= S

(
(w∗)Tx1 + b, . . . , (w∗)TxN + b

)
.

Combining this equation and the inequality 6 into the definition 4 of L(w) yields

L(w, b) < L(w∗, b) .

This contradicts the assumption that w∗ is optimal, and therefore u must be zero.
This completes the proof.
Of course, since this result was derived for any value of the bias term b, it also holds when

b = b∗, the optimal value.

2Since the vectors x1, . . . ,xN are generally not linearly independent, the coefficients β1, . . . , βN are generally not
unique, but this fact does not matter for this proof.
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Support Vectors A practically advantageous consequence of the representer theorem is sparsity.
To define and understand this concept, suppose that the SVM classifies a certain training sample
(xn, yn) correctly and with a margin of at least equal to the reference margin µ∗. Then, the
definition of sample margin

µ(w,b∗)(x, y) = µ∗y [(w∗)Tx + b∗]

implies that
yn [(w∗)Txn + b∗] > 1

and therefore that sample incurs zero loss:

`(w∗,b∗)(xn, yn) = ρ(1− yn[(w∗)Txn + b∗]) = max{0, 1− yn[(w∗)Txn + b∗]} = 0 .

In other words, as long as a sample is classified correctly and with sufficient margin (greater than
µ∗) it has no influence on the solution: The parameters w∗, b∗ of the optimal classifier’s decision
hyperplane depend only on the samples that are either classified incorrectly or classified correctly
but with a margin smaller than or equal to µ∗. These “problem samples” are called the support
vectors: They “support” the hyperplane in that they pin it down regardless of where the other
samples are. Once the hyperplane has been found, the set of support vectors, which are typically
sparse in the training set, are the only vectors that matter.

The first practical consequence of the existence of a relatively small set of support vectors is that
they provide some intuition as to which training samples are difficult for the classifier to classify
correctly, as they are either misclassified or classified correctly but with a small margin. Since many
support vectors are generally near the decision boundary, the designer of a classification system
may look at pairs of support vectors that are near each other but have different (true) labels. These
are examples of data points that are hard for the classifier to distinguish from each other, and they
may suggest ways to improve the classifier. For instance, the designer may just provide more data
points that are similar to those, in the hope to pin down the decision boundary more precisely. Or
she may figure out what makes the two data points in a pair different from each other, and perhaps
design a way to process the data to make those differences more salient, so that the training set
becomes closer to being linearly separable.

A second advantage deriving from the representer theorem is deeper and more far-reaching from
a conceptual standpoint, and is discussed in the next sections of this note. In preparation, we now
show that the representer theorem allows rewriting both the decision rule and the optimization target
for SVMs in terms of inner products of data points (points in X). Specifically, by the representer
theorem, the vector w∗ in the unique solution of the SVM training problem can be written as
follows:

w∗ =
N∑

n=1

βnxn . (7)

Replacing this expression for w∗ into the decision rule 1 yields

ŷ = h(x) = sign

(
N∑

n=1

βnxT
nx + b∗

)
(8)

and doing the same with the risk function in equation 3 yields

LT (w, b) =
1

2

N∑
m,n=1

βmβnxT
mxn +

C0

N

N∑
n=1

ρ

(
1− yn

(
N∑

m=1

βmxT
mxn + b

))
(9)
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where ρ is the hinge function.
As a consequence, both training and testing involve the data samples xn (or, for points outside

the training set, x) exclusively through their inner products xT
mxn (or xT

nx). We now explore why
this fact is so important.

2 Augmented Features

We saw in an earlier note that whether the samples in a binary classification problem are linearly
separable depends on the representation of the data space X. For instance, consider a problem in
which X = R2 and the decision boundary is the parabola x2 = x21, with the samples with positive
label in the convex region delimited by the parabola. Then, the classification rule is

h(x) =

{
1 if x2 ≥ x21
−1 otherwise.

These samples are of course not linearly separable. However, one can transform the data by
replacing every point x = (x1, x2) with a new point z = (z1, z2) = (x21, x2), and now the decision
boundary becomes z2 = z1, which is a straight line. The new set of samples is linearly separable.

An alternative to changing the representation, as we did above, is to augment it instead. For
instance, we could have defined z = (z1, z2, z3) = (x1, x2, x

2
1). Here, we appended the feature x21 to

the vector, rather than replacing x1 with it. The new samples (z, y) are linearly separable: There
is a line that separates the projections ((z2, z3), y) and therefore a plane (spanned by the line and
a vector along the z1 axis) that separates the samples (z, y) themselves.

Augmentation seems wasteful: The new representation is redundant, and computations become
more complex. In addition, augmentation increases the dimensionality of X, and we are now court-
ing the curse of dimensionality. In other words, we increased both the computational complexity
(how many operations to perform) and the sample complexity (how many training samples are
needed for training given a performance target) of the problem. Why think of feature augmenta-
tion, then? The reason is that, when faced with a new classification problem, we do not know the
decision boundary, so it is generally hard to guess a transformation that will make the problem
linearly separable if it is not. Instead, we can add many transformations of the variables, in the
hope that a combination of some of those might make the problem linearly separable.

For instance, we could add all monomials of the original variables up to some degree k. If k = 3
and x = (x1, x2), we have

d′ =

(
d+ k

d

)
=

(
2 + 3

2

)
= 10

monomials of degree up to three in two variables:

1 , x1 , x2 , x21 , x1x2 , x22 , x31 , x21x2 , x1x
2
2 , x32 (10)

if we also count x1 and x2. From Taylor’s theorem, we know that if the degree k is large enough,
we can approximate any hypersurface to any degree of accuracy. Therefore, it is more than a hope
that augmentation will lead to linear separability if carried far enough: It’s a theorem!

But what about sample complexity and computational complexity? Defining sample complexity
quantitatively would require a somewhat lengthy detour into the relevant theory. That detour is
left to Appendix A, which is optional reading. The bottom line is rather striking: If the data space
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X ⊂ Rd for an SVM classifier is bounded, that is, if there exists a sufficiently large d-dimensional
hypersphere that contains all of X, then the sample complexity of SVMs does not depend on the
dimensionality d of X. Thus, as long as the data space for an SVM is bounded, we can augment
features to our heart’s desire without incurring the curse of dimensionality! This result does not
hold for linear-regression classifiers.

On the other hand, as the augmented data vectors zn get longer and longer it takes more and
more time to process the data, both during training and during inference. That is, the compu-
tational complexity increases. Fortunately, the representer theorem comes to the rescue through
the notion of kernels. Well beyond giving us inexpensive computation, kernels also enhance the
expressive power of SVMs in major ways, transforming them from linear classifiers to classifiers
with potentially arbitrarily complex and nonlinear decision boundaries. These topics are discussed
next.

3 Kernels

The idea of feature augmentation can be formulated abstractly by saying that instead of using the
original feature vector x as a data point, we use some higher-dimensional feature vector z = ϕ(x)
obtained by some transformation of x. Thus, we can see ϕ as a feature mapping from Rd to Rd′ ,
where d′ > d, and often d′ � d. If we use these new features, equations 8 and 9 can be written as
follows

ŷ = h(x) = sign

(
N∑

n=1

βnK(xn,x) + b∗

)
(11)

LT (w, b) =
1

2

N∑
m,n=1

βmβnK(xm,xn) +
C0

N

N∑
n=1

ρ

(
1− yn

(
N∑

m=1

βmK(xm,xn) + b

))
(12)

where
K(x, ξ)

def
= ϕ(x)Tϕ(ξ) .

For given x and ξ this quantity is a single number, regardless of the dimensionality d′ of the
codomain of ϕ. Importantly, all the training and inference algorithms need to know is K(xm,xn)
and K(xn,x), because the individual (high-dimensional!) terms ϕ(xn) and ϕ(x) do not appear
anywhere in isolation.

The first, relatively minor way for exploiting this observation is that if we have a mapping ϕ
in mind and somehow we find an inexpensive way to compute the inner product K(xm,xn), then
we can save computation. For instance, it is not clear how to do this with the monomials listed in
expression 10. However, let us replace these by the following:

ϕ(x) = ϕ(x1, x2) = (1 ,
√

3x1 ,
√

3x2 ,
√

3x21 ,
√

6x1x2 ,
√

3x22 , x
3
1 ,
√

3x21x2 ,
√

3x1x
2
2 , x

3
2)

T .

These monomials are scaled versions of the original ones, and therefore span the same space. With
this new definition, however, we can write

(xT ξ + 1)3 = (x1ξ1 + x2ξ2 + 1)3

= 1 + 3x1ξ1 + 3x2ξ2 + 3x21ξ
2
1 + 6x1x2ξ1ξ2 + 3x22ξ

2
2 + x31ξ

3
1

+3x21x2ξ
2
1ξ2 + 3x1x

2
2ξ1ξ

2
2 + x32ξ

3
2

= ϕ(x)Tϕ(ξ) = K(x, ξ) .
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Thus, instead of computing the ten products and nine sums necessary to compute the inner
product of ϕ(x) ad ϕ(ξ), we just compute the four products and two sums needed to compute
(xT ξ+ 1)3. This is of course a modest saving. However, as both the degree k and the number d of
variables increase, the savings become exponentially large.

On the other hand, there is a much neater and much more useful idea for exploiting the ob-
servations made earlier: We can just come up with some kernel K(x, ξ), without knowing what
transformation ϕ generates it! Of course, we cannot just use any function K of two vectors
x, ξ ∈ Rd, because K needs to be indistinguishable from an inner product. For instance, inner
products are symmetric:

xT ξ = ξTx

and satisfy the Cauchy-Schwartz inequality:

(xT ξ)2 ≤ ‖x‖2 ‖ξ‖2 ,

and therefore a valid kernel K(x, ξ) must satisfy

K(x, ξ) = K(ξ,x) and K2(x, ξ) ≤ K(x,x) K(ξ, ξ) .

However, these conditions are not enough to guarantee that K(x, ξ) is the inner product in some
vector space.

Fortunately, there is a characterization of all valid kernels in the literature [4]. If we have a
finite set of vectors xn ∈ Rd (as we do with a training set), then a symmetric function K(x, ξ) :
Rd × Rd → R is a kernel function on that set if and only if the matrix with entry i, j equal to
K(xi,xj) is positive semi-definite.

There is also an analogous result for infinite sets. This is important, because we would like to
know that a given K(x, ξ) is a kernel without first having to choose a training set. In the continuous
case, a continuous, symmetric function K(x, ξ) is a kernel function, that is, it can be written as

K(x, ξ) = ϕ(x)Tϕ(ξ)

for some mapping ϕ from Rd to Rd′ if and only if for every function f : Rd → R for which the
integral ˆ

Rd
f(x) dx is finite,

the following condition holds: ˆ
Rd×Rd

K(x, ξ) f(x) f(ξ) dx dξ ≥ 0 .

This condition is called Mercer’s condition, and you should be able to recognize it as an im-
mediate extension of the notion of a positive semi-definite matrix to the continuous case. There is
a whole theory that lets one check algorithmically whether this condition holds, and the theory is
based on eigenfunctions, the functional equivalent of eigenvectors [4]. As a very important example,
the Gaussian kernel

K(x, ξ) = e−
‖x−ξ‖2

σ2 (13)

can be shown to satisfy Mercer’s condition, and is therefore a kernel. SVMs that use a Gaussian
kernel are called Radial Basis Function (RBF) SVMs. Many ways to build other kernels can be
found in the literature [1, 2].

7



Kernels, Support Vectors, and Decision Boundaries The kernel idea implies that rather
than being restricted to the inner product K(x, ξ) = xT ξ when working with SVMs, we can replace
K(·, ·) by any function Rd × Rd → R that satisfies Mercer’s condition. Why is this useful? The
main reason is that instead of finding a decision hyperplane, an SVM that uses kernels can find
decision hyper-surfaces that are potentially arbitrarily complex and nonlinear.

The decision rule for an SVM using kernel K is (equation 11)

h(x) = sign

(
N∑

n=1

βnK(xn,x) + b∗

)
and the decision hyper-surface has therefore equation

N∑
n=1

βnK(xn,x) + b∗ = 0 .

When K is the inner product, this hyper-surface is a hyperplane. For different choices of K,
on the other hand, the hyper-surface can have a very different shape. Consider for instance the
Gaussian kernel in equation 13. The equation of the decision hyper-surface then reads

N∑
n=1

βne
− ‖x−xn‖2

σ2 + b = 0 . (14)

One can prove that in that case the values of βn for the support vectors with true positive label
(yn = 1) are positive, and those for the support vectors with a true negative label (yn = −1) are
negative [1, 2].

This fact leads to an interesting geometric interpretation of equation 14: Place a positive
Gaussian, scaled by βn and with parameter σ, at every support vector xn with positive true label,
and place a negative Gaussian, scaled by βn and with parameter σ, at every support vector xn with
negative true label. The decision hyper-surface is the point-by-point sum of all these functions.
Thus, the positive support vectors are “pulling up” the score function, and the negative support
vectors are “pulling it down.” The decision hyper-surface in the original space is the set of hyper-
surfaces where this sum equals −b. Figure 1 illustrates.

Thus, with enough support vectors, an RBF SVM can follow arbitrarily complex boundaries,
and the boundary weaves its way around the Gaussians between positive and negative support
vectors.

Training Kernel SVMs While the decision boundary for a kernel SVM is the solution of an
equation that is nonlinear in the data points xn, the equation is still affine in the coefficients βn
that appear in the risk function LT in equation 12. In addition, the risk function is convex for the
same reasons that the original risk function for linear SVMs is convex, namely, that LT is the sum
of two convex functions in the coefficients βn: The regularization term is quadratic and therefore
convex. The average hinge loss is the composition of an affine function and a convex function (the
hinge function), and is therefore convex as well.

Because of this, we can again use gradient descent in one of its versions to minimize the risk
LT and train the SVM. However, the number of unknowns βn is now N , the number of training
samples, rather than d+ 1, where d is the dimensionality of the data space. Since typically N � d,
the stochastic version of gradient descent is even more attractive here. Just as for the linear case,
also in the kernel case other formulations are possible and lead to different optimization methods.
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Figure 1: The geometry of an RBF SVM for a toy two-dimensional classification problem.
Left: The SVM classifies any data point x in the red region as negative, and any data point in the
blue region as positive. The solid line between the two regions is the decision boundary. (A hyper-
surface in two dimensions is a curve.) The two dashed curves delimit the reference margin. The
red symbols are negative samples from the training set and the blue symbols are positive samples.
Hollow circles are samples that are classified correctly and are outside the reference margin. Filled
circles are classified correctly but are within the reference margin. The red triangle is a misclassified
negative training sample. Thus, the eight filled symbols (circles or triangle) are support vectors.
In bigger problems, there are typically many fewer support vectors than other vectors.

Right: A 3D view of the decision score s(x) =
∑N

n=1 βne
− ‖x−xn‖2

σ2 + b for the same SVM. Negative
values are in red, positive ones in blue. Each positive support vector (blue filled circles in the
diagram on the left) contributes a positive Gaussian centered on it. However, only two blue bells
are visible on the right because any two Gaussians centered at nearby points add up to a single
bell. The four negative Gaussians centered at the four negative support vectors (red filled symbols
on the left) are close enough to each other to merge into a single negative bell. The zero-crossing
of the surface on the right (that is, the curve with equation s(x) = 0) is the decision boundary,
corresponding to the solid black curve on the left. The training samples that are classified correctly
and are outside the reference margin (hollow circles in the diagram on the left) do not contribute
to the score function s(x).
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Appendix

A Sample Complexity

This Section conveys the gist of what would take several lectures to work out in detail, so there
will be no proofs. The goal of this Appendix is to explain what “sample complexity” means for a
machine learning problem. If you are interested, you can find a good treatment of these topics in
a recent book [3].

Intuitively, the more training samples we have, the better a given training algorithm should be
able to do in terms of generalization, because a large training set is a more faithful and detailed
proxy for all the data we might encounter in the future. Sample complexity measures how fast the
size N of a training set needs to grow as we make more and more exacting demands on the ability
of the classifier to generalize. Formalizing this notion requires some care, as we now see.

Recall that we assume that all data, both that in the training set and that which we encounter
when we deploy the algorithm, comes from a given but unknown probability distribution p(x, y),
which we called the model of the problem. At training time, we are given a training set T of size
N , and the training algorithm finds the classifier ĥ in the hypothesis space H that minimizes the
empirical risk LT (h):

ĥ = ERMT (H) ∈ arg min
h∈H

LT (h) .

Ideally, the empirical risk achieved by ĥ on T is the smallest one on H, so that

LT (ĥ) = LT (H) = min
h∈H

LT (h) .

When deployed, that classifier will achieve a statistical risk

Lp(ĥ) = Ep[`(y, ĥ(x))]

that is generally higher than the empirical risk LT (ĥ), because ĥ is likely to overfit T to some
degree.

More importantly, the statistical risk Lp(ĥ) achieved by training our classifier on T will also be
higher than the smallest achievable statistical risk in H and under the given model p(x, y),

Lp(H) = min
h∈H

Lp(h) where Lp(h) = Ep[`(y, h(x))] .
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The statistical risk Lp(ĥ) is higher than Lp(H) because ĥ was trained on T , and T is a poor
proxy for p(x, y).

Notation: There are at least three risks here, so let us keep them straight. To summarize: The classifier

ĥ is found by minimizing the empirical risk on T , resulting in a value LT (ĥ) for the empirical risk. This

classifier achieves a statistical risk Lp(ĥ) when deployed, and this statistical risk is typically greater than

both the empirical risk LT (ĥ) on T and the smallest achievable statistical risk Lp(H) for the given model p

and hypothesis space H, because T represents p poorly.

The smallest achievable statistical risk Lp(H) is generally not equal to zero. For instance, if H
is the set of linear classifiers and the data is not linearly separable, then there is no way to achieve
zero risk. However, the closer the classes are to being linearly separable, the smaller Lp(H) will be
for that H.

Thus, in general, all we can hope to achieve is some statistical risk Lp(ĥ) that is equal to
Lp(H) + ε for some ε > 0:

Lp(ĥ) = Lp(H) + ε ≥ 0 .

We would like ε to be small, and the price we must pay to make ε smaller is to make the training
set T bigger, so that it is a more faithful representation of all the data we have not yet seen.

Loosely speaking, we can view N , the size of T , as a monotonically increasing function of 1/ε,
which we think of as the degree of exactitude we want to achieve: To obtain a large value of 1/ε
(that is, a small ε), we need to make N large enough. Then, we say that a machine learning problem
has a low sample complexity if N grows slowly with 1/ε, that is, as ε shrinks.

A key difficulty in formalizing this notion, that is, when trying to speak less loosely, is that it is
not possible to have absolute guarantees: The N samples in T are drawn at random out of p(x, y),
and if we are really unlucky we may end up with a particularly bad T (a “statistical fluke”). In
that case, the classifier ĥ will perform more poorly than if we were given a “more typical” set of N
random samples out of p.

Because of this, we cannot demand to be within ε from Lp(H) with absolute certainty, but we
must settle for a probabilistic guarantee. Specifically, we ask to fall below risk Lp(H) + ε with high
probability. More formally, in addition to a number ε with 0 < ε, we also give a positive number
δ with 0 < δ < 1, and we ask how large N needs to be for it to be unlikely (as measured by the
probability δ) that the actual statistical risk Lp(ĥ) achieved by the classifier ĥ is greater than our
target Lp(H) + ε. In a formula, we ask for the following inequality to hold:

P[Lp(ĥ) ≥ Lp(H) + ε] ≤ δ . (15)

Note the strict inequalities on δ: This number is assumed to be less than 1, because it bounds a
probability, so with δ = 1 the bound would be moot. This number is also strictly positive, because
we can never be certain to achieve the desired bound.

We are now ready to define sample complexity: The sample complexity of a given machine
learning problem is the function NH(ε, δ) that specifies the smallest number N of samples that are
necessary to satisfy the inequality 15 for the given hypothesis space H and regardless of the model
p. That is, N(ε, δ) must be so large that the bound 15 holds for all p.

As an example, suppose that ε = 0.1 and δ = 0.01. Then, if N is large enough for the inequality
above to hold, we know that the probability that the loss is more than 0.1 above the minimum
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possible loss Lp(H) is less than 1 percent. Stated differently, the loss falls within 0.1 from optimal
with 99 percent probability.

The requirement that the bound be independent of the model p(x, y) is rather strong. As a
result, we will typically be able to bound N from below (“it takes at least this many samples”) and
with an asymptotic bound, rather than giving an exact expression for it.

Sample Complexity for Linear Classifiers and for SVMs Now that we know how to define
sample complexity, let us see, without proof, what the complexity is for binary linear classifiers in
general and for SVMs in particular. We will see that SVMs come with much better guarantees
under a weak assumption on X.

For binary linear classifiers, it turns out that N grows at least as fast as the following function:

d+ log(1/δ)

ε
.

Thus, N must grow linearly with 1/ε and with the logarithm of 1/δ for the bound 15 to hold.
More importantly, N must grow linearly with the dimension d of the data space X: The more
dimensions, the more data we need. This linear dependence is not too bad, given what we know
about the curse of dimensionality, and is the main reason why linear classifiers are so successful.

For SVMs, on the other hand, the situation is even better, if the data space X ⊂ Rd is
bounded3, that is, if there exists a sufficiently large d-dimensional hypersphere that contains all of
X. A formula for the actual sample complexity is harder to give in this case, because it depends on
the radius of the hypershpere that bounds X, the parameter C used for regularization of the SVM
training risk, and the margin between the two classes. However, and most importantly, it can be
shown that the sample complexity of SVMs does not depend on the dimensionality d of X.

Because of this advantage, when learning SVMs we need not worry about d, and we are ef-
fectively free from the curse of dimensionality, as long as the data space X is bounded! The
implication for data augmentation is that we do not need to worry about sample complexity when
we add features to the data points x.

3This assumption is useful for SVMs, but would not help for general linear classifiers.
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