
Training Convolutional Neural Networks

Carlo Tomasi

November 28, 2022

1 The Soft-Max Simplex

Neural networks are typically designed to compute real-valued functions y = h(x) : Rd → Re

of their input x. When a classifier is needed, a soft-max function is used as the last layer, with e
entries in its output vector p if there are e classes in the label space Y . The class corresponding to
input x is then is found as the arg max of p. Thus, the network can be viewed as a function

p = f(x,w) : X → P

that transforms data space X into the soft-max simplex P , the set of all nonnegative real-valued
vectors p ∈ Re whose entries add up to 1:

P
def
= {p ∈ Re : p ≥ 0 and

e∑
i=1

pi = 1} .

This set has dimension e− 1, and is the convex hull of the e columns of the identity matrix in Re.
Figure 1 shows the 1-simplex and the 2-simplex.1

The vector w in the expression above collects all the parameters of the neural network, that is,
the gains and biases of all the neurons. More specifically, for a deep neural network with K layers
indexed by k = 1, . . . ,K, we can write

w =

 w(1)

...

w(K)


where w(k) is a vector collecting both gains and biases for layer k.

If the arg max rule is used to compute the class,

ŷ = h(x) = arg maxp ,

then the network makes a correct prediction for a data point with true class c ∈ {1, . . . , e} if p falls
in the interior of the decision region

Pc = {pc ≥ pj for j 6= c} ,

because then arg maxp = c. Each of these regions is convex, because its boundaries are defined by
linear inequalities in the entries of p. Thus, when used for classification, the neural network can
be viewed as learning a transformation of the original, possibly very complicated decision regions
in X into the convex, very simple decision regions in the soft-max simplex.

1In geometry, the simplices are named by their dimension, which is one less than the number of classes.

1

p
1

p
2

1

1

1/2

1/2

1/3

1/3

1/3

1

1

1

p
3

p
1

p
2

Figure 1: The 1-simplex for two classes (dark segment in the diagram on the left) and the 2-simplex
for three classes (light triangle in the diagram on the right). The blue dot on the left and the blue
line segments on the right are the boundaries of the decision regions. The boundaries meet at the
unit point 1/e in e dimensions.

2 Loss

The risk LT to be minimized to train a neural network is the average loss on a training set of
input-output pairs

T = {(x1,y1), . . . , (xN ,yN)} .

The outputs yn are categorical in a classification problem, and real-valued vectors in a regression
problem.

For a regression problem, the loss function is typically the quadratic loss,

`(y,y′) = ‖y − y′‖2 .

For classification, on the other hand, we would like the risk LT (h) to be differentiable, in order
to be able to use gradient descent methods during training. However, the arg max is a piecewise-
constant function, and its derivatives are either zero (almost everywhere) or undefined (where the
arg max changes value), and gradient descent cannot be used. The zero-one loss function has similar
properties.

To address these issue, a differentiable loss defined on f (the output from the soft-max) is used
as a proxy for the zero-one loss defined on h (the output from the arg-max). Specifically, the multi-
class cross-entropy loss is used, which we studied in the context of logistic-regression classifiers. Its
definition is repeated here for convenience:

`(y,p) = − log py .

Equivalently, if q(y) = (q1(y), . . . , qe(y)) is the one-hot encoding of the true label y, the cross-
entropy loss can also be written as follows:

`(y,p) = −
e∑

c=1

qc(y) log pc .

2

With these definitions, LT is a piecewise-differentiable function, and one can use gradient or sub-
gradient methods to compute the gradient of LT with respect to the parameter vector w.

Exceptions to differentiability are due to the use of the ReLU (which has a cusp at the origin)
as the nonlinearity in neurons, as well as to the possible use of max-pooling. These exceptions
are pointwise, and are typically ignored in both the literature and the software packages used to
minimize LT . We know that this is OK, since “ignoring” the cusp just means that we assign an
arbitrary value to the sub-gradient there. As long as the value is between 0 and 1 inclusive (and it
typically is either one of these values in the packages), standard results about the sub-gradient [3]
ensure convergence.

As usual, once the loss has been settled on, the training risk is defined as the average loss over
the training set, and expressed as a function of the parameters w of f :

LT (w) =
1

N

N∑
n=1

`n(w) where `n(w) = `(yn, f(xn,w)) . (1)

3 Back-Propagation

A local minimum for the risk LT (w) is found by an iterative procedure that starts with some initial
values w0 for w, and then at step t performs the following operations:

• Compute the gradient of the training risk,

∂LT

∂w

∣∣∣∣
w=wt−1

.

• Take a step that reduces the value of LT by moving in the general direction of the negative
gradient by a variant of the steepest descent method called Stochastic Gradient Descent
(SGD), discussed in Section 4, or other similar descent algorithms.

The gradient computation (first step above) is called back-propagation and is described next.
The computation of the n-th loss term `n(w) on the training data point xn can be rewritten by

passing xn through the layers of a network from input to output and then through the loss function
as follows:

Rename the input: x(0) = xn

Go through each layer: x(k) = f (k)(x(k−1)) for k = 1, . . . ,K

Rename the output from the soft-max layer: p = x(K)

Compute the loss: `n = `(yn,p)

where yn is the true label for xn and f (k) describes the function implemented by layer k. This
chain of computations is called the forward pass or forward propagation through the network and
loss function.

Computation of the derivatives of the loss term `n(w) can be understood with reference to
Figure 2, and is a straight-forward application of the chain rule for differentiation as follows.

The value of `n generally varies whenever any of the weights in w changes. More specifically, it
depends on the parameter vector w(k) for layer k only through the output x(k) from that layer

`n(w(k)) = `n(x(k)(w(k)))

3

(1)f f (2) f (3)

w(1) w(2) w(3)

(1)x (2)x (3)x = p(0)xn x= l n

ny

l

Figure 2: Example data flow for the computation of the loss term `n for a neural network with
K = 3 layers. When viewed from the loss term `n, the output x(k) from layer k (pick for instance
k = 2) is a bottleneck of information for both the parameter vector w(k) for that layer and the
output x(k−1) from the previous layer (k − 1 = 1 in the example). This observation justifies the
use of the chain rule for differentiation to obtain equations (2) and (3).

because the layers form a cascade. We can therefore use the chain rule of differentiation to write

∂`n

∂w(k)
=

∂`n

∂x(k)

∂x(k)

∂w(k)
for k = K, . . . , 1 . (2)

For the same reason, `n depends on the output x(k−1) from layer k− 1 only through the output
x(k) from layer k:

`n(x(k−1)) = `n(x(k)(x(k−1)))

and we can therefore write the following backward recursion for the gradient on the right-hand side
of equation (2):

∂`n

∂x(k−1) =
∂`n

∂x(k)

∂x(k)

∂x(k−1) for k = K, . . . , 2 . (3)

The recursion (3) starts with
∂`n

∂x(K)
=
∂`

∂p
(4)

where p is the second argument to the loss function `(yn,p).
In the equations above, the derivative of a function with respect to a vector is to be interpreted

as the row vector of all derivatives. Let dk be the dimensionality (number of entries) of x(k), and
jk be the dimensionality of w(k). The two matrices

∂x(k)

∂w(k)
=


∂x

(k)
1

∂w
(k)
1

· · · ∂x
(k)
1

∂w
(k)
jk

...
...

∂x
(k)
dk

∂w
(k)
1

· · ·
∂x

(k)
dk

∂w
(k)
jk

 and
∂x(k)

∂x(k−1) =


∂x

(k)
1

∂x
(k−1)
1

· · · ∂x
(k)
1

∂x
(k−1)
dk−1

...
...

∂x
(k)
dk

∂x
(k−1)
1

· · ·
∂x

(k)
dk

∂x
(k−1)
dk−1

 (5)

are the Jacobian matrices of the layer output x(k) with respect to the layer parameters and inputs
respectively. Computation of the entries of these Jacobians is a simple exercise in differentiation,
and is left to the Appendix. All derivatives in these Jacobian matrices are local to each layer, in
that they only require knowing the structure of that layer.

The equations (2) through (5) are the basis for the back-propagation algorithm for the compu-
tation of the gradient of the training risk LT (w) with respect to the parameter vector w of the
neural network (Algorithm 1).

4

Specifically, the algorithm loops over the training samples. For each sample, it feeds the input
xn to the network to compute the layer outputs x(k) for that sample and for all k = 1, . . . ,K, in
this order (forward propagation). The algorithm temporarily stores all the values x(k), because
they are needed to compute the required derivatives during back-propagation.

The algorithm then revisits the layers in reverse order while computing the derivatives in equa-
tion (4) the first time around and then those in equations (2) and (3) for decreasing values of k. It
finally concatenates the resulting K layer gradients into a single gradient ∂`n

∂w . This computation is
called back-propagation (of the derivatives).

The gradient of LT (w) is the average (from equation (1) and linearity of both summation and
gradient) of the gradients computed for each of the samples:

∂LT

∂w
=

1

N

N∑
n=1

∂`n
∂w

=
1

N

N∑
n=1


∂`n

∂w(1)

...
∂`n

∂w(K)


(here, the derivatives with respect to w(k) are read as column vectors of derivatives). This av-
erage vector can be accumulated over n (see last assignment statement in Algorithm 1) as back-
propagation progresses. For succinctness, operations are expressed as matrix-vector computations
in Algorithm 1. In practice, the matrices would be very sparse, and convolutions and explicit loops
over appropriate indices are used instead.

Algorithm 1 Backpropagation

function ∇LT ← backprop(T,w = [w(1), . . . ,w(K)], `) . Training set, initial weights, loss function

∇LT = zeros(size(w))
for n = 1, . . . , N do . Loop over all training samples

x(0) = xn

for k = 1, . . . ,K do . Forward propagation

x(k) ← f (k)(x(k−1),w(k)) . Compute and store layer outputs to be used in back-propagation

end for
∇`n = [] . Initially empty contribution of the n-th sample to the loss gradient

g = ∂`(yn,x(K))
∂p . g is ∂`n

∂x(k)

for k = K, . . . , 2 do . Back-propagation

∇`n ← [gT ∂x(k)

∂w(k) ;∇`n] . Derivatives are evaluated at w(k) and x(k)

g← gT ∂x(k)

∂x(k−1) . Ditto

end for
∇LT ← (n−1)∇LT+∇`n

n . Accumulate the average

end for
end function

4 Stochastic Gradient Descent

In principle, a neural network can be trained by minimizing the training risk LT (w) defined in
equation (1) by any of a vast variety of numerical optimization methods [6, 2]. At one end of the
spectrum, methods that make no use of gradient information take too many steps to converge.

5

At the other end, methods that use second-order derivatives (Hessian) to determine high-quality
steps tend to be too expensive in terms of both space and time at each iteration, although some
researchers advocate these types of methods [5]. By far the most widely used methods employ
gradient information, computed by back-propagation [1]. Line search is too expensive, since it
requires many function evaluations, each of which in turn requires a full forward pass through the
network and loss.

The Learning Rate. Because of the high cost of line search, the step size αt, which is also
called the learning rate, is chosen according to some heuristic instead, and the standard (that is
non-stochastic) version of gradient descent is then simply

wt+1 = wt − αt∇LT (wt) (6)

starting from an initial w0 chosen at random near the origin.
The learning rate αt is of critical importance [7]. A rate that is too large leads to large steps

that often overshoot minima, and a rate that is too small leads to very slow progress. In practice,
the learning rate is first set to some relatively large constant, say, 10−3, to encourage rapid risk
decrease in the early steps of optimization. Once the risk shows signs of flattening out, the step
size is reduced gradually, so as not to miss narrow valleys that may contain a deep minimum.

One way to decrease the learning rate is to follow some fixed schedule. However, since conver-
gence can take between hours and weeks for typical applications, the value of LT is often monitored
through some user interface. Every time progress starts to saturate, the learning rate is decreased
(say, divided by 10) either automatically or manually.

Several automatic methods for step size selection have been proposed [4]. Empirically, these
show typically good results early on during training. As a minimum is approached, is has been
found that switching to a fixed and small step size is often preferable. Please refer back to the
notes on optimization for heuristics and variants, such as the momentum method.

Mini-Batches. The gradient of the risk LT (w) is expensive to compute, and one tends to use as
large a learning rate as possible so as to minimize the number of steps taken. One way to prevent
the resulting overshooting would be to do online learning, in which each step −α∇`n(wt) (there
is one such step for each training sample) is taken right away, rather than accumulated into the
step −α∇LT (wt) (no subscript n here). In contrast, using the latter step as done in equation (6)
is called batch learning.

Computing ∇`n is much less expensive (by a factor of N) than computing ∇LT . In addition—
and most importantly for convergence behavior—online learning breaks a single batch step into N
small steps, after each of which the value of the risk is re-evaluated. As a result, a sequence of N
online steps can follow very “curved” paths, whereas a single batch step can only move in a fixed
direction in parameter space for the same computational cost. Because of this greater flexibility,
online learning converges faster than batch learning for the same overall computational effort. The
small online steps, however, have high variance, because each of them is taken based on minimal
amounts of data. One can improve convergence further by processing mini-batches of training data:

Accumulate B gradients ∇`n from the data in one mini-batch into a single gradient ∇L(B)
T , take

the step, and move on to the next mini-batch. It turns out that small values of B achieve the best
compromise between reducing variance and keeping steps flexible. Values of B around a few dozen

6

are common. This is Stochastic Gradient Descent (SGD). Again, please refer back to the notes on
optimization for more discussion of SGD.

Early Termination. When used outside machine learning, gradient descent is typically stopped
when steps make little progress, as measured by step size ‖wt−wt−1‖ and/or decrease in function
value |LT (wt) − LT (wt−1)|. When training a deep network, on the other hand, descent is often
stopped earlier to improve generalization. Specifically, while minimizing the cross-entropy risk of
the soft-max output on the training set by SGD, one monitors the zero-one risk error of the classifier
on a validation set and stops when the validation error bottoms out, even if the training-set risk
would continue to decrease.

7

Appendix

The Jacobians for Back-Propagation

If f (k) is a point function, that is, if it is R → R, the individual entries of the Jacobian matrices
(5) are easily found to be (reverting to matrix subscripts for the weights)

∂x
(k)
i

∂W
(k)
qj

= δiq
df (k)

da
(k)
i

x̃
(k−1)
j and

∂x
(k)
i

∂x
(k−1)
j

=
df (k)

da
(k)
i

W
(k)
ij .

The Kronecker delta

δiq =

{
1 if i = q
0 otherwise

in the first of the two expressions above reflects the fact that x
(k)
i depends only on the i-th activation,

which is in turn the inner product of row i of W (k) with x̃(k−1). Because of this, the derivative of

x
(k)
i with respect to entry W

(k)
qj is zero if this entry is not in that row, that is, when i 6= q. The

expression

df (k)

da
(k)
i

is shorthand for
df (k)

da

∣∣∣∣∣
a=a

(k)
i

,

the derivative of the activation function f (k) with respect to its only argument a, evaluated for

a = a
(k)
i .

For the ReLU activation function hk = h,

df (k)

da
=

{
1 for a ≥ 0
0 otherwise

.

For the ReLU activation function followed by max-pooling, hk(·) = π(h(·)), on the other hand,
the value of the output at index i is computed from a window P (i) of activations, and only one of
the activations (the one with the highest value) in the window is relevant to the output2. Let then

p
(k)
i = max

q∈P (i)
(h(a(k)q))

be the value resulting from max-pooling over the window P (i) associated with output i of layer k.
Furthermore, let

q̂ = arg max
q∈P (i)

(h(a(k)q))

be the index of the activation where that maximum is achieved, where for brevity we leave the
dependence of q̂ on activation index i and layer k implicit. Then,

∂x
(k)
i

∂W
(k)
qj

= δqq̂
df (k)

da
(k)
q̂

x̃
(k−1)
j and

∂x
(k)
i

∂x
(k−1)
j

=
df (k)

da
(k)
q̂

W
(k)
q̂j .

2In case of a tie, we attribute the highest values in P (i) to one of the highest inputs, say, chosen at random.

8

References

[1] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[2] S. Boyd and L. Vandeberghe. Convex Optimization. Cambdrige University Press, 2004.

[3] J. B. Hiriart-Urruty and C. Lemaréchal. Convex analysis and minimization algorithms I: Fun-
damentals, volume 305. Springer science & business media, 2013.

[4] D. P. Kingma and J. L. Ba. Adam: A method for stochastic optimization. In Yoshua Bengio
and Yann LeCun, editors, 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

[5] J. Martens. Learning recurrent neural networks with Hessian-free optimization. In Proceedings
of the 28th International Conference on Machine Learning, pages 735–742, 2011.

[6] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, New York, NY, 1999.

[7] D. R. Wilson and T. R. Martinez. The general inefficiency of batch training for gradient descent
learning. Neural Networks, 16:1429–1451, 2003.

9

	The Soft-Max Simplex
	Loss
	Back-Propagation
	Stochastic Gradient Descent

