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Functions

Functions Everywhere

• SPAM
A = {all possible emails}
Y = {true,false}
f : A→ Y and y = f (a) ∈ Y for a ∈ A

• Virtual Tennis
A = {all possible video frames} ⊆ Rd

Y = {body configurations} ⊆ Re

• Medical diagnosis, speech recognition, movie
recommendation
• Predictor = Regressor or Classifier
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Functions

Classic and ML

• Classic:
• Design features by hand
• Design f by hand

• ML:
Define A, Y
Collect Ta = {(a1, y1), . . . , (aN , yN)} ⊂ A× Y
Choose F
Design λ : {all possibleTa} → F
Train: f = λ(Ta)
Hopefully, y ≈ f (a) now and forever

• Technical: A can be anything. Too difficult to work with.
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Features

Features

• From A to X ⊆ Rd

x = φ(a)
y = h(x) = h(φ(a)) = f (a)

h : X ⊆ Rd → Y ⊆ Re

H ⊆ {X → Y}
T = {(x1, y1), . . . , (xN , yN)} ⊂ X × Y

• Just numbers!
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Features

Features for SPAM

d = 20,000

φ also useful in order to make d smaller or x more
informative
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Features

Fitting and Learning

• Loss `(y ,h(x)) : Y × Y → R+

• Empirical Risk (ER): average loss on T
• Fitting and Learning:

• Given T ⊂ X × Y with X ⊆ Rd

H = {h : X → Y} (hypothesis space)
• Fitting: Choose h ∈ H to minimize ER over T
• Learning: Choose h ∈ H to minimize some risk over

previously unseen (x, y)
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Features

Summary

• Features insulate ML from domain vagaries
• Loss function insulates ML from price considerations
• Empirical Risk (ER) averages loss for h over T
• ER measures average performance of h
• A learner picks an h ∈ H that minimizes some risk
• Data fitting minimizes ER and stops here
• ML wants h to do well also tomorrow
• The risk for ML is on a bigger set
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Polynomial Fitting: Univariate

Data Fitting: Univariate Polynomials

h : R→ R
h(x) = c0 + c1x + . . .+ ckxk

with ci ∈ R for i = 0, . . . , k
• The definition of the structure of h defines the hypothesis

space H
• T = {(x1, y1), . . . , (xN , yN)} ⊂ R× R
• Quadratic loss `(y , ŷ) = (y − ŷ)2

• ER: LT (h)
def
= 1

N

∑N
n=1 `(yn,h(xn))

• Choosing h is the same as choosing c = [c0, . . . , ck ]
T

• LT is a quadratic function of c
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Polynomial Fitting: Univariate

Rephrasing the Loss

NLT (h) =
∑N

n=1[yn − h(xn)]
2 =∑N

n=1{yn − [c0 + c1xn + . . .+ ckxk
n ]}2

=

∥∥∥∥∥∥∥
 y1 − [c0 + c1x1 + . . .+ ckxk

1 ]
...

yN − [c0 + c1xN + . . .+ ckxk
N ]


∥∥∥∥∥∥∥

2

∥∥∥∥∥∥∥
 y1

...
yN

−
 1 x1 . . . xk

1
...
1 xN . . . xk

N


 c0

...
ck


∥∥∥∥∥∥∥

2

= ‖b− Ac‖2
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Polynomial Fitting: Univariate

Linear System in c

c0 + c1xn + . . .+ ckxk
n = yn

Ac = b

A =

 1 x1 . . . xk
1

...
...

...
1 xN . . . xk

N

 and b =

 y1
...

yN


• Where are the unknowns?
• Why is this linear?
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Polynomial Fitting: Univariate Least Squares Fitting

Least Squares

Ac = b

b
?
∈ range(A)

ĉ ∈ argmin
c
‖Ac− b‖2

Thus, we are minimizing the empirical risk LT (h)
(with the quadratic loss) over the training set
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Polynomial Fitting: Univariate Choosing a Degree

Choosing a Degree

0 1
0

5

0 1
0

5

0 1
0

5

k = 1 k = 3 k = 9
• Underfitting, overfitting, interpolation
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Polynomial Fitting: Multivariate

Data Fitting: Multivariate Polynomials
• The story is not very different:

h(x) = c0 + c1x1 + c2x2 + c3x2
1 + c4x1x2 + c5x2

2

• Polynomial of degree up to 2

A =

 1 x11 x12 x2
11 x11x12 x2

12
...

...
...

...
...

...
1 xN1 xN2 x2

N1 xN1xN2 x2
N2

 ,

b =

 y1
...

yN

 , c =

 c0
...

c5


• The rest is the same
• Why are we not done?
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Limitations of Polynomials

Counting Monomials

• Monomial of degree k ′ ≤ k in d variables:

xk1
1 . . . xkd

d where k1 + . . .+ kd = k ′

• How many monomials of degree up to k are there?

m(d , k) =
(

d + k
k

)
(See an Appendix for a proof)
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Limitations of Polynomials

Asymptotics: Too Many Monomials

m(d , k) =
(d+k

k

)
= (d+k)!

d!k! = (d+k) (d+k−1) ... (d+1)
k!

k fixed: O(dk)

d fixed: O(kd)

• When k is O(d), look at m(d ,d):

m(d ,d) is O(4d/
√

d)

• Except when k = 1 or d = 1, growth is polynomial (with
typically large power) or exponential (if k and d grow
together)
• This difficulty is specific to polynomials
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The Curse of Dimensionality

The Curse of Dimensionality
• A large d is typically troublesome
• We want T to be “representative”
• “Filling” Rd with N samples

X = [0,1]2 ⊂ R2

10 bins per dimension, 102 bins total
X = [0,1]d ⊂ Rd

10 bins per dimension, 10d bins total
• d is often hundreds or thousands (SPAM d ≈ 20,000)
• 1080 atoms in the universe
• We will always have too few data points
• This difficulty is general
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