Introduction to Machine Learning

COMPSCI 371D — Machine Learning

< 同 > < 三 > < 三 >

- 1 Unsupervised Learning
- 2 Drawings and Intuition in Higher Dimensions
- 3 Classification through Regression
- 4 Linear Separability

・ 同 ト ・ ヨ ト ・ ヨ

Parenthesis: Supervised vs Unsupervised

- Supervised: Train with (x, y)
 - Classification: Hand-written digit recognition
 - Regression: Median age of YouTube viewers for each video

Unsupervised: Train with x

- Clustering: Group customers by similar tastes to focus advertising
- Dimensionality reduction: Which dimensions contain most of the variation?

[Image from cw.fel.cvut.cz]

We will not cover unsupervised learning

Drawings Help Intuition

< < >> < <</>

Classifiers as Partitions of X

- $\hat{y} = h(x)$ for $\hat{y} \in Y$, a categorical set $X_y \stackrel{\text{def}}{=} h^{-1}(y)$ partitions X (not just T!)
- Classifier = partition
- $S = h^{-1}$ (red square), $C = h^{-1}$ (blue circle)

Intuition Often Fails in Many Dimensions

- Gray parts dominate when $d \to \infty$
- Distance from center to corners diverges when $d
 ightarrow \infty$

< ロ > < 同 > < 回 > < 回 >

Classification, Geometry, and Regression

- A classifier partitions $X \subset \mathbb{R}^d$ into sets, one per label in Y
- How do we represent sets ⊂ ℝ^d? How do we work with them?
- We'll see a couple of ways: nearest-neighbor classifier, decision trees
- These methods have a strong geometric flavor
- Beware of our intuition!
- Another technique: *score-based* classifiers
 - *i.e.*, classification through regression
- Examples: linear classifiers, support vector machines, neural networks

Score-Based Classifiers

[Figure adapted from Wei et al., Structural and Multidisciplinary Optimization, 58:831-849, 2018]

- *s* = 0 defines the *decision boundaries*
- *s* > 0 and *s* < 0 defines the (two) *decision regions*

< ロ > < 同 > < 回 > < 回 >

Score-Based Classifiers

- Threshold some *score function s*(**x**):
- Example: 's'(red squares) and 'c'(blue circles)

• Correspond to two sets $S \subseteq X$ and $C = X \setminus S$ If we can estimate something like $s(\mathbf{x}) = \mathbb{P}[\mathbf{x} \in S]$

$$h(\mathbf{x}) = \left\{ egin{array}{cc} \mathsf{'s'} & ext{if } s(\mathbf{x}) > 1/2 \ \mathsf{'c'} & ext{otherwise} \end{array}
ight.$$

Classification through Regression

• If you prefer 0 as a threshold, let

$$s(\mathbf{x}) = 2\mathbb{P}[\mathbf{x} \in S] - 1 \in [-1, 1]$$

$$h(\mathbf{x}) = \begin{cases} \text{'s'} & \text{if } s(\mathbf{x}) > 0 \\ \text{'c'} & \text{otherwise} \end{cases}$$

- Scores are convenient even without probabilities, because they are easy to work with
- We implement a classifier *h* by building a regressor *s*
- Example: Logistic-regression classifiers

Linearly Separable Training Sets

- Some line (hyperplane in \mathbb{R}^d) separates *C*, *S*
- Requires *much* smaller \mathcal{H}
- Simplest score: $s(\mathbf{x}) = b + \mathbf{w}^T \mathbf{x}$. The line is $s(\mathbf{x}) = 0$

$$h(\mathbf{x}) = \left\{ egin{array}{cc} \mathsf{'s'} & ext{if } s(\mathbf{x}) > 0 \ \mathsf{'c'} & ext{otherwise} \end{array}
ight.$$

Data Representation?

• Linear separability is a property of the data *in a given representation*

- Xform 1: $z = x_1^2 + x_2^2$ implies $\mathbf{x} \in S \Leftrightarrow a \le z \le b$
- Xform 2: $u = |\sqrt{x_1^2 + x_2^2} r| = |\sqrt{z} r|$ yields linear separability:
 - $\mathbf{x} \in \mathbf{S} \Leftrightarrow \mathbf{u} \leq \Delta \mathbf{r}$