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Motivation and Scope

¢ Most estimation problems are solved by optimization
e Machine learning:
e Parametric predictor: h(x; v) : R xR™ — Y
® Training set T = {(x1,y1) ., (Xn, ¥n)} and loss = U(yn, y)
* Risk: Lr(v) = N (Y h(Xn: V)) - R™ SR
e Training: V€ argmin,_pm LT(v)
e “Solving” the system of equations e(z) = 0 can be viewed
as
2 =c arg min; ||e(2)|
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. VetvatonandScope
Only Local Minimization

Z = arg minge, f(2)

All we know about f is a “black box” (think Python function)
For many problems, f has many local minima

Start somewhere (z;), and take steps “down”

f(Zkt1) < f(2k)

When we get stuck at a local minimum, we declare success
We would like global minima, but all we get is local ones
For some problems, f has a unique minimum...

... or at least a single connected set of minima
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Gradient
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z ¢ R™ with m possibly very large
e If Vf(z) exists everywhere, the condition Vf(z) =0

is necessary and sufficient for a stationary point
(max, min, or saddle)

e Warning: only necessary for a minimum!
¢ Reduces to first derivative when f : R -+ R
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First Order Taylor Expansion
f(z) ~ 91(2) = f(20) + [V/(20)]"(z - 20)
approximates f(z) near z, with a (hyper)plane through z,

)

Vf(zy) points to direction of steepest increase of f at z,
e If we want to find z; where f(z1) < f(zy), going along
—Vf(zp) seems promising
¢ This is the general idea of gradient descent
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Hessian
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e Symmetric matrix because of Schwarz’s theorem:
Pf 0Pf
02;0z; 020z
e Eigenvalues are real because of symmetry
¢ Reduces to 5722' forf : R—>R
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Convexity

uz+(l-u)z'

e Strongly convex everywhere:
For all z, 2’ in the (open) domain of f and for all u € (0,1)

fluz+(1 —u)Z') < uf(z) + (1 — u)f(Z)
e Weak convexity: Replace “<” with“<”
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Convexity and Hessian

¢ Things become operational for twice-differentiable functions

e The function f(z) is strongly convex everywhere iff H(z) >~ 0
for all z

e “>" means positive definite:
V' H(z)v > OforallveR"
e Above is definition of H(z) >~ 0
¢ To check computationally: All eigenvalues are positive
e H(z) - Oreducesto £f > 0forf : R » R

dz2
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Local Convexity

e Definition: fis (strongly or weakly) convex at z, if it is
(strongly or weakly) convex everywhere in some open
neighborhood of z,

e For f twice differentiable with continuous Hessian
everywhere

* H(zp) ~ 0 is sufficient (not necessary)
for strong convexity at zg

* H(zo) = 0is necessary (not sufficient)
for weak convexity at zg

e Examples:

* f(z) = 22 is strongly convex at zy = 0 and H;(0) = 2

* f(z) = z* is strongly convex at zy = 0 and H;(0) = 0

® f(z) = z% has a saddle at zy = 0 and H;(0) = 0
(every neighborhood of zy = 0 has points (any z < 0)
where Hy(z) = 6z < 0 so that H¢(z) < 0)
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Some Uses of Convexity

e If Vf(zp) = 0 and f is (strongly or weakly) convex at z, then
Z, is a (strong or weak) minimum (as opposed to a
maximum or a saddle)

e |f fis globally convex then the value of the minimum is
unigue and the points where the minimum is achieved form
a convex set

e Faster optimization methods (Newton) can be used when
f : R™ — Ris convex and mis not too large
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A Template for Local Minimization
¢ Unconstrained minimization template:
(zo given)
k=0
while zx is not a minimum
compute step direction pg
compute descent rate a, > 0

Zy 1 = Zk + akPk
Kk=k+1
end

e For some methods (Newton) the step

Sk = Zk41 — Zk = kPk

is the result of a single computation
e The step sizeis ||axp«||
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Design Decisions

(2o given) In what direction to

k=0 proceed (p«)

while z, is not a minimum
compute step direction pg

compute descent rate a, > 0
Zi 1 = Zk + akPk When to stop (“while z,

k=k-+1 is not a minimum”)
end

How long a step to take
in that direction (o)

Different decisions lead
to different methods
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Gradient Descent

In what direction to proceed: px = —Vf(zk)
“Gradient descent”

Problem reduces to one dimension:

h(a) = f(zx + apk) With ax > 0

e 0a=0s2z=2

Find o = ax > 0 such that

f(zk + owpk) < f(zk)

How to find oy ?
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Descent Rate
e Simplest idea: ax = « (fixed)
® Step size | — aVf(z)| decreases because V(zx) — 0
® Small o leads to slow progress
® Large o can miss minima

e Scheduling «:
e Start with « relatively large (say o = 1073)
® Decrease « over time
® Determine decrease rate by trial and error
(good asymptotic guarantees with o o< 1/(k + 1))
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.~ DescentRate Selection Methods
Momentum

e Sometimes z, meanders around on shallow plateaus

f(zx) versus k

01

) 200 400 600 800 1000 1200

® o is too small, direction is still promising

e Add momentum
vo=0
Vi1 = UkVg — Oéka(Zk) (0 < g < 1)
Zi1 = Zk + Vi
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~ DescentRate Selection Methods
Line Search

¢ Find a local minimum in the search direction px
h(«) = f(zx + apk), @ one-dimensional problem

® Bracketing triple:

e a<b<c, h(a)>h(b), h(b)< h(c)

e Contains a (local) minimum!

e Split the bigger of [a, b] and [b, c] in half with a point u

¢ Find a new, narrower bracketing triple involving u and two
outof a,b,c

¢ Stop when the bracket is narrow enough (say, 10~°)

¢ Pinned down a minimum to within 10~°
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Phase 1: Find a Bracketing Triple

hia) }
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Phase 2: Shrink the Bracketing Triple

hia) }
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fb—a>c—b>b
u=(a+b)/2
if h(u) > h(b)
(a,b,c) =(u,b,c)
otherwise
(a,b,c) = (a,u,b)
end
otherwise
u=(b+c)/2
if h(u) > h(b)
(a,b,c) = (a,b,u)
otherwise
(a,b,c) = (b,u,c)
end
end

COMPSCI 371D — Machine Learning 20/25



. Tormination
Termination

Are we still making “significant progress”?

Check f(zx_1) — f(zx)? (We want this to be strictly positive)
Check ||zx_1 — 2«|| 7 (We want this to be large enough)
Second is more stringent close the the minimum

because Vf(z) ~ 0

Stop when ||z — 2| < ¢
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Is Gradient Descent a Good Strategy?

e “We are going in the direction of fastest descent”
“We choose an optimal descent rate by line search”
“Must be good, no?” Not so fast!

An example for which we know the answer:
fz)=c+a’z+1z'Qz

Q = 0 (convex paraboloid)

All smooth functions look like this close enough to z*
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Skating to a Minimum

|

e Many 90-degree turns slow down convergence

e There are methods that take fewer iterations, but each
iteration takes more time and space

e We will stick to gradient descent

e See appendices in the notes for more efficient methods for
problems in low-dimensional spaces
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Stochastic Gradient Descent

¢ A special case of gradient descent, SGD works for
averages of many terms (N very large):

= 5 0@

e Computing V£(zx) is too expensive
e Partition B = {1,..., N} into J random mini-batches B;
each of about equal size

f(z) ~ £(2) |B|Z¢n = Vi(z) = Vf(2).

neB;

¢ Mini-batch gradients are correct on average



~ stochasticGradient Descent
SGD and Mini-Batch Size

e SGD iteration: zx.1 = zZx — aVfi(2k)
e Mini-batch gradients are correct on average
e One cycle through all the mini-batches is an epoch

¢ Repeatedly cycle through all the data
(Scramble data before each epoch)

e Asymptotic convergence can be proven with suitable
descent-rate schedule

e Small batches = low storage but high gradient variance

e Make batches as big as will fit in memory for minimal
variance

¢ |n deep learning, memory is GPU memory
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