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Motivation and Scope

Motivation and Scope

• Most estimation problems are solved by optimization
• Machine learning:

• Parametric predictor: h(x ; v) : Rd × Rm → Y
• Training set T = {(x1, y1), . . . , (xN , yN)} and loss = `(yn, y)
• Risk: LT (v) = 1

N
∑N

n=1 `(yn,h(xn ; v)) : Rm → R
• Training: v̂ ∈ argminv∈Rm LT (v)

• “Solving” the system of equations e(z) = 0 can be viewed
as

ẑ =∈ argminz ‖e(z)‖
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Motivation and Scope

Only Local Minimization

ẑ = argminz∈? f (z)
• All we know about f is a “black box” (think Python function)
• For many problems, f has many local minima
• Start somewhere (z0), and take steps “down”

f (zk+1) < f (zk)

• When we get stuck at a local minimum, we declare success
• We would like global minima, but all we get is local ones
• For some problems, f has a unique minimum...
• ... or at least a single connected set of minima
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First Order Methods

Gradient

∇f (z) = ∂f
∂z =


∂f
∂z1...
∂f
∂zm


z ∈ Rm with m possibly very large
• If ∇f (z) exists everywhere, the condition ∇f (z) = 0

is necessary and sufficient for a stationary point
(max, min, or saddle)
• Warning: only necessary for a minimum!
• Reduces to first derivative when f : R→ R
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First Order Methods

First Order Taylor Expansion
f (z) ≈ g1(z) = f (z0) + [∇f (z0)]

T (z− z0)

approximates f (z) near z0 with a (hyper)plane through z0

z1

z2

f(z)

z0

∇f (z0) points to direction of steepest increase of f at z0

• If we want to find z1 where f (z1) < f (z0), going along
−∇f (z0) seems promising
• This is the general idea of gradient descent
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Gradient, Hessian, and Convexity

Hessian

H(z) =


∂2f
∂z2

1
. . . ∂2f

∂z1∂zm

...
...

∂2f
∂zm∂z1

. . . ∂2f
∂z2

m


• Symmetric matrix because of Schwarz’s theorem:

∂2f
∂zi∂zj

=
∂2f
∂zj∂zi

• Eigenvalues are real because of symmetry
• Reduces to d2f

dz2 for f : R→ R
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Gradient, Hessian, and Convexity

Convexity

z

z'u z + (1-u) z'

f(u z + (1-u) z')

u f(z) + (1-u) f(z')

f(z')

f(z)

• Strongly convex everywhere:
For all z, z′ in the (open) domain of f and for all u ∈ (0,1)
f (uz + (1− u)z′) < uf (z) + (1− u)f (z′)
• Weak convexity: Replace “<” with“≤”
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Gradient, Hessian, and Convexity

Convexity and Hessian

• Things become operational for twice-differentiable functions
• The function f (z) is strongly convex everywhere iff H(z) � 0

for all z
• “�” means positive definite:

vT H(z)v > 0 for all v ∈ Rm

• Above is definition of H(z) � 0
• To check computationally: All eigenvalues are positive
• H(z) � 0 reduces to d2f

dz2 > 0 for f : R→ R
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Gradient, Hessian, and Convexity

Local Convexity
• Definition: f is (strongly or weakly) convex at z0 if it is

(strongly or weakly) convex everywhere in some open
neighborhood of z0

• For f twice differentiable with continuous Hessian
everywhere
• H(z0) � 0 is sufficient (not necessary)

for strong convexity at z0
• H(z0) � 0 is necessary (not sufficient)

for weak convexity at z0

• Examples:
• f (z) = z2 is strongly convex at z0 = 0 and Hf (0) = 2
• f (z) = z4 is strongly convex at z0 = 0 and Hf (0) = 0
• f (z) = z3 has a saddle at z0 = 0 and Hf (0) = 0

(every neighborhood of z0 = 0 has points (any z < 0)
where Hf (z) = 6z < 0 so that Hf (z) ≺ 0)
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Gradient, Hessian, and Convexity

Some Uses of Convexity

• If ∇f (z0) = 0 and f is (strongly or weakly) convex at z0 then
z0 is a (strong or weak) minimum (as opposed to a
maximum or a saddle)
• If f is globally convex then the value of the minimum is

unique and the points where the minimum is achieved form
a convex set
• Faster optimization methods (Newton) can be used when

f : Rm → R is convex and m is not too large
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Gradient, Hessian, and Convexity

A Template for Local Minimization
• Unconstrained minimization template:

(z0 given)
k = 0
while zk is not a minimum

compute step direction pk

compute descent rate αk > 0
zk+1 = zk + αkpk

k = k + 1
end

• For some methods (Newton) the step

sk = zk+1 − zk = αkpk

is the result of a single computation
• The step size is ‖αkpk‖
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Gradient, Hessian, and Convexity

Design Decisions

(z0 given)
k = 0
while zk is not a minimum

compute step direction pk

compute descent rate αk > 0
zk+1 = zk + αkpk

k = k + 1
end

• In what direction to
proceed (pk )

• How long a step to take
in that direction (αk )

• When to stop (“while zk

is not a minimum”)

• Different decisions lead
to different methods
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Gradient Descent

Gradient Descent

• In what direction to proceed: pk = −∇f (zk)

• “Gradient descent”
• Problem reduces to one dimension:

h(α) = f (zk + αpk) with αk > 0
• α = 0⇔ z = zk

• Find α = αk > 0 such that
f (zk + αkpk) < f (zk)

• How to find αk?
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Descent Rate Selection Methods

Descent Rate
• Simplest idea: αk = α (fixed)

• Step size ‖ − α∇f (zk )‖ decreases because ∇(zk )→ 0
• Small α leads to slow progress
• Large α can miss minima

α α᾽

• Scheduling α:
• Start with α relatively large (say α = 10−3)
• Decrease α over time
• Determine decrease rate by trial and error

(good asymptotic guarantees with αk ∝ 1/(k + 1))
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Descent Rate Selection Methods

Momentum
• Sometimes zk meanders around on shallow plateaus
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f (zk) versus k

• α is too small, direction is still promising
• Add momentum

v0 = 0
vk+1 = µkvk − αk∇f (zk) (0 ≤ µk < 1)
zk+1 = zk + vk+1
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Descent Rate Selection Methods

Line Search

• Find a local minimum in the search direction pk

h(α) = f (zk + αpk), a one-dimensional problem
• Bracketing triple:
• a < b < c, h(a) ≥ h(b), h(b) ≤ h(c)
• Contains a (local) minimum!
• Split the bigger of [a,b] and [b, c] in half with a point u
• Find a new, narrower bracketing triple involving u and two

out of a,b, c
• Stop when the bracket is narrow enough (say, 10−6)
• Pinned down a minimum to within 10−6
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Descent Rate Selection Methods

Phase 1: Find a Bracketing Triple

α

h(α)
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Descent Rate Selection Methods

Phase 2: Shrink the Bracketing Triple

α

h(α)
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Descent Rate Selection Methods

if b − a > c − b
u = (a + b)/2
if h(u) > h(b)

(a,b, c) = (u,b, c)
otherwise

(a,b, c) = (a,u,b)
end

otherwise
u = (b + c)/2
if h(u) > h(b)

(a,b, c) = (a,b,u)
otherwise

(a,b, c) = (b,u, c)
end

end
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Termination

Termination

• Are we still making “significant progress”?
• Check f (zk−1)− f (zk)? (We want this to be strictly positive)
• Check ‖zk−1 − zk‖ ? (We want this to be large enough)
• Second is more stringent close the the minimum

because ∇f (z) ≈ 0
• Stop when ‖zk−1 − zk‖ < δ
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Is Gradient Descent a Good Strategy?

Is Gradient Descent a Good Strategy?
• “We are going in the direction of fastest descent”
• “We choose an optimal descent rate by line search”
• “Must be good, no?” Not so fast!
• An example for which we know the answer:

f (z) = c + aT z + 1
2zT Qz

Q � 0 (convex paraboloid)
• All smooth functions look like this close enough to z∗

z*

isocontours
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Is Gradient Descent a Good Strategy?

Skating to a Minimum

z 0

z*p
0

• Many 90-degree turns slow down convergence
• There are methods that take fewer iterations, but each

iteration takes more time and space
• We will stick to gradient descent
• See appendices in the notes for more efficient methods for

problems in low-dimensional spaces
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Stochastic Gradient Descent

Stochastic Gradient Descent
• A special case of gradient descent, SGD works for

averages of many terms (N very large):

f (z) =
1
N

N∑
n=1

φn(z)

• Computing ∇f (zk) is too expensive
• Partition B = {1, . . . ,N} into J random mini-batches Bj

each of about equal size

f (z) ≈ fj(z) =
1
|Bj |

∑
n∈Bj

φn(z) ⇒ ∇f (z) ≈ ∇fj(z) .

• Mini-batch gradients are correct on average
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Stochastic Gradient Descent

SGD and Mini-Batch Size

• SGD iteration: zk+1 = zk − αk∇fj(zk)

• Mini-batch gradients are correct on average
• One cycle through all the mini-batches is an epoch
• Repeatedly cycle through all the data

(Scramble data before each epoch)
• Asymptotic convergence can be proven with suitable

descent-rate schedule
• Small batches⇒ low storage but high gradient variance
• Make batches as big as will fit in memory for minimal

variance
• In deep learning, memory is GPU memory
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