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Definitions and Properties

Definitions

• A linear regressor fits an affine function to the data
y ≈ h(x) = b + wT x for x ∈ Rd and y ∈ R
• A linear, binary classifier separates the data in X ⊆ Rd

corresponding to the two classes in Y = {c0, c1} with a
hyperplane
• The actual data can be separated only if it is linearly

separable (!)
• Multi-class linear classifiers separate any two classes with a

hyperplane
• The resulting decision regions are convex and simply

connected (polyhedra)

COMPSCI 371D — Machine Learning Linear Predictors Part 1 3 / 18



Definitions and Properties

Properties of Linear Predictors

• Linear Predictors...
• ...have a very small H with d + 1 parameters

(resist overfitting)
• ... are trained by solving a convex optimization problem

(global optimum)
• ... are fast at inference time

(and training is not too slow)
• ... work well if the data is close to linearly separable
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The Least-Squares Linear Regressor

The Least-Squares Linear Regressor

• Déjà vu: Polynomial regression with k = 1
y ≈ hv(x) = b + wT x for x ∈ Rd

• Parameter vector v =

[
b
w

]
∈ Rd+1

H isomorphic to Rm with m = d + 1
• “Least Squares:” `(y , ŷ) = (y − ŷ)2

• v̂ = arg minv∈Rm LT (v)

• Risk LT (v) = 1
N

∑N
n=1 `(yn,hv(xn))

• We know how to solve this
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The Least-Squares Linear Regressor

Linear Regression Example
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• Left: All of Ames. Residual
√

Risk: $55,800
• Right: One Neighborhood. Residual

√
Risk: $23,600

• Left, yellow: Ignore two largest homes
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The Least-Squares Linear Regressor

Binary Classification by Logistic Regression

Y = {c0, c1}
• Multi-class case later
• The logistic-regression classifier is a classifier!
• A linear classifier implemented through regression
• The logistic is a particular function
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The Logistic-Regression Classifier

Score-Based Classifiers

Y = {c0, c1}
• Think of c0, c1 as numbers: Y = {0,1}
• We saw the idea of level sets:

Regress a score function s(x) such that
s(x) is large where y = 1, small where y = 0
• Threshold s to obtain a classifier:

h(x) =

{
c0 if s(x) ≤ threshold
c1 otherwise.

• A linear classifier implemented through regression
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The Logistic-Regression Classifier

Idea 1

• s(x) = b + wT x
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1
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• Not so good!
• A line does not approximate a step well
• Why not fit a step function?
• NP-hard unless the data is separable
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The Logistic-Regression Classifier

Idea 2
• How about a “soft step?”
• The logistic function

0

0

0.5

1

f (x)
def
= 1

1+e−x

• If a true step moves, the risk does not change until a data
point flips label
• If the logistic function moves (f (x)→ f (x − s)), the risk

changes gradually
• We have a nonzero gradient almost everywhere!
• The optimization problem is no longer combinatorial
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The Logistic-Regression Classifier

What is a Logistic Function in d Dimensions?
• We want a linear classifier
• The level crossing must be a hyperplane
• Level crossing: Solution to s(x) = 1/2
• Shape of the crossing depends on s
• Compose an affine a(x) = c + uT x (a : Rd → R)

...with a monotonic f (a) that crosses 1/2 (f : R→ R)
s(x) = f (a(x)) = f (c + uT x)

• Then, if f (α) = 1/2, the equation s(x) = 1/2
is the same as c + uT x = α

• A hyperplane!
• Let f be the logistic function
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The Logistic-Regression Classifier

Example
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• Gold line: Regression problem R→ R
• Black line: Classification problem R2 → R

(result of running a logistic-regression classifier)
• Labels: Good (red squares, y = 1) or poor quality (blue

circles, y = 0) homes
• All that matters is how far a point is from the black line
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Probabilities and the Geometry of Logistic Regression

A Probabilistic Interpretation
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• All that matters is how far a point is from the black line
• Convert activation a(x) to a signed distance ∆(x)
• s(x) = f (∆(x)) where ∆ is a signed distance
• We could interpret the score s(x) as “the probability that

y = 1:” f (∆(x)) = P[y = 1]
• (...or as “1− the probability that y = 0”)

lim∆→−∞ P[y = 1] = 0 lim∆→∞ P[y = 1] = 1
∆ = 0⇒ P[y = 1] = 1/2 (just like the logistic function)
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Probabilities and the Geometry of Logistic Regression

Ingredients for the Regression Part

• Determine the distance ∆ of a point x ∈ X from a
hyperplane χ, and the side of χ on which the point is on
(Geometry: affine functions as unscaled, signed distances)
• Specify a monotonically increasing functionf that turns ∆(x)

into a probability p = f (∆(x)) (Choice based on
convenience: the logistic function)
• Define a loss function `(y ,p) that measures how good p is

given the true label y (Convenience again: choose ` so that
`(y , f (∆(x))) is a convex risk: The cross-entropy loss)
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Probabilities and the Geometry of Logistic Regression

Normal to a Hyperplane

• Hyperplane χ: b + wT x = 0 (w.l.o.g. b ≤ 0)
a1,a2 ∈ χ⇒ c = a1 − a2 parallel to χ
• Subtract b + wT a1 = 0 from b + wT a2 = 0
• Obtain wT c = 0 for any a1,a2 ∈ χ
• w is perpendicular to χ
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Probabilities and the Geometry of Logistic Regression

Distance of a Hyperplane from the Origin

x
x

0

n

Δ(x) > 0

β

x᾽
Δ(x) < 0

χ

positive half-space

negative half-space

• Unit-norm version of w: n = w
‖w‖

• Rewrite χ: b + wT x = 0 (w.l.o.g. b ≤ 0) as
nT x = β where β = − b

‖w‖ ≥ 0
• Line along n: x = αn for α ∈ R (parametric form)
α is the signed distance from the origin
• Replace into eq. for χ: αnT n = β that is, α = β ≥ 0
• In particular, x0 = βn
• β is the distance of χ from the origin
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Probabilities and the Geometry of Logistic Regression

Signed Distance of a Point from a Hyperplane

x
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nT x = β where β = − b
‖w‖ ≥ 0 and n = w

‖w‖
x0 = βn
• In one half-space, nT x ≥ β
• Distance of x from χ is nT x− β ≥ 0
• In other half-space, nT x′ ≤ β
• Distance of x′ from χ is β − nT x′ ≥ 0
• On decision boundary, nT x = β

• ∆(x)
def
= nT x− β is the signed distance of x from the

hyperplane
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Probabilities and the Geometry of Logistic Regression

Summary
If w is nonzero (which it has to be), the distance from the origin
of the hyperplane χ with equation b + wT x = 0 is

β
def
=
|b|
‖w‖

(a nonnegative number) and the quantity

∆(x)
def
=

b + wT x
‖w‖

is the signed distance of point x ∈ X from hyperplane χ.
Specifically, the distance of x from χ is |∆(x)|, and ∆(x) is
nonnegative if and only if x is on the side of χ pointed to by w.
Let us call that side the positive half-space of χ.

COMPSCI 371D — Machine Learning Linear Predictors Part 1 18 / 18


	Definitions and Properties
	The Least-Squares Linear Regressor
	The Logistic-Regression Classifier
	Probabilities and the Geometry of Logistic Regression

