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What Linear, Binary SVM Classifiers Do

An Issue with the Logistic Regression Classifier

• LRC boundary depends on all the points
• The landscape near the boundary should matter most
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What Linear, Binary SVM Classifiers Do

The Separable Case

?
• Where to place the boundary?
• The number of degrees of freedom grows with d
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What Linear, Binary SVM Classifiers Do

SVMs Maximize the Smallest Margin

• Placing the boundary as far as possible from the nearest
samples improves generalization
• Leave as much empty space around the boundary as

possible
• Only the points that barely make the margin matter
• These are the support vectors
• Initially, we don’t know which points will be support vectors
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What Linear, Binary SVM Classifiers Do

The General Case: Soft SVMs

• If the data is not linearly separable, there must be misclassified
samples. These have a negative margin

• Assign a penalty that penalizes a narrow band around the
boundary and the number of samples that fall into it or on the
incorrect side of the boundary

• Give different weights to the two penalties (cross-validation!)
• Find the optimal compromise: minimum risk (total penalty)
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Margin

Separating Hyperplane

• X = Rd and Y = {−1,1}
(more convenient labels than {0,1})
• Hyperplane: nT x + c = 0 with ‖n‖ = 1
• Decision rule: ŷ = h(x) = sign(nT x + c)
• n points towards the ŷ = 1 half-space
• If y is the true label, decision is correct if{

nT x + c ≥ 0 if y = 1
nT x + c ≤ 0 if y = −1

• More compactly,
decision is correct if y(nT x + c) ≥ 0
• SVMs want this inequality to hold with a margin
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Margin

Margin

• The margin of (x, y) is the
signed distance of x from
the boundary: Positive if x
is on the correct side of the
boundary, negative otherwise

µv(x, y)
def
= y (nT x + c)

• v = (n, c)
• Margin of a training set T :

µv(T )
def
= min(x,y)∈T µv(x, y)

• Boundary separates T if
µv(T ) > 0

n

separating 
hyperplane

ŷ = 1= −1ŷ

1

µ (x, 1)v

1

µ (x, -1)v

1

COMPSCI 371D — Machine Learning Linear, Binary SVM Classifiers 8 / 14



Loss and Regularized Risk

The Hinge Loss
• Reference margin µ∗ > 0

(unknown, to be determined)
• Hinge loss `v(x, y):

1
µ∗

max{0, µ∗ − µv(x, y)}
• Training samples with
µv(x, y) ≥ µ∗

are classified correctly
with a margin at least µ∗

• Some loss incurred as soon as
µv(x, y) < µ∗

even if the sample is
classified correctly

n

reference 
margin

separating 
hyperplane

ŷ = 1= −1ŷ

1

µ (x, 1)v
µ*

1

µ*µ (x, -1)v

reference 
margin

l (x, -1)v

l (x, 1)v
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Loss and Regularized Risk

The Training Risk

• The training risk for SVMs is not just 1
N

∑N
n=1 `v(xn, yn)

• A regularization term is added to force µ∗ to be large
• Decision boundary is nT x + c = 0
`v(x, y) = 1

µ∗
max{0, µ∗ − µv(x, y)}

= 1
µ∗

max{0, µ∗ − y (nT x + c)} = max{0,1− y(wT x + b)}
= `(w,b)(x, y)
where the decision boundary is wT x + b = 0
with w = n

µ∗
, b = c

µ∗
and ‖w‖ = 1

µ∗

• Make risk higher when 1
µ∗

is large (small margin):

LT (w,b)
def
= 1

2‖w‖
2 + C0

N

∑N
n=1 `(w,b)(xn, yn)
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Loss and Regularized Risk

Regularized Risk

• ERM classifier:
(w∗,b∗) = ERMT (w,b) = argmin(w,b) LT (w,b)

where LT (w,b)
def
= 1

2‖w‖
2 + C0

N

∑N
n=1 `(w,b)(xn, yn)

• `(w,b)(xn, yn)
def
= max{0,1− yn(wT xn + b)}

• C0 determines a trade-off
• C0 is a hyper-parameter: Cross-validation!
• Large C0 ⇒ ‖w‖ less important⇒ smaller margin µ∗

⇒ fewer samples within the margin
• We buy a larger margin at the cost of more samples inside it
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Training an SVM

Training an SVM
• (w∗,b∗) = argmin(w,b) LT (w,b) where

LT (w,b) = 1
2‖w‖

2 + C0
N

∑N
n=1 `n and

`n = `(w,b)(νn)
def
= max{0,1− yn(wT xn + b)︸ ︷︷ ︸

νn

}

= max{0,1− νn} = ρ(

z︷ ︸︸ ︷
1− νn)

• ρ(z) = max{0, z} is the hinge function

z

ρ(z)

• A.k.a. Rectified Linear Unit (ReLU) in deep learning
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Training an SVM

Training an SVM
• (w∗,b∗) = argmin(w,b) LT (w,b) where

LT (w,b) = 1
2‖w‖

2 + C0
N

∑N
n=1 ρ(1− yn(wT xn + b))

• Use gradient or stochastic gradient descent on LT (w,b)
• ρ not differentiable→ use the sub-gradient

z

ρ(z)

• For instance, ρ′(z) =
{

1 for z > 0
0 elsewhere.
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Training an SVM

Sub-Gradient of the Risk
• SGD: Mini-batch B of size M with 1 ≤ M ≤ N
• (w∗,b∗) = argmin(w,b) LB(w,b) where

LB(w,b) = 1
2‖w‖

2 + C0
M

∑M
n=1 ρ(1− yn(wT xn + b))

∂LB

∂w
= w− C0

M

M∑
n=1

ρ′(1− yn(wT xn + b)) ynxn

∂LB

∂b
= −C0

M

M∑
n=1

ρ′(1− yn(wT xn + b)) yn .

• Use (stochastic) gradient descent to find w∗,b∗

• Recall that the risk is convex
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