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|
Roadmap

e SVMs so far are linear classifier, so they won’t work well for
non linearly separable data

¢ Feature augmentation: Add entries to the data point vectors
X, to make the data separable (or close to)

¢ Increases computational complexity and sample complexity
(we need more training data in higher dimensions)

* The representer theorem lets us address this conundrum

¢ The effect is to make SVM decision boundaries very
nonlinear

¢ This increases applicability of SVM enormously
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L vl e v el
Data Representations

e Linear separability is a property of the data in a given
representation

e A set that is not linearly separable. Boundary x, = x2
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 Linear Separabilty and Feature Augmentation
Feature Transformations

°* X= (X1, %) = z2=(21,2) = (X}, x2)

e Now it is! Boundary z, = z;
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L vl e v el
Feature Augmentation

Feature transformation:

X=(X1,X%) = 2= (Z,2) = (X2, Xx)
Problem: We don’t know the boundary!

We cannot guess the correct transformation
Feature augmentation:

X=(X1,X%) = 2= (21,2,2) = (X1, X2, X?)
Why is this better?

Add many features in the hope that some combination will
help
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L vl e v el
Not Really Just a Hope!

¢ Add all monomials of xi, x» up to some degree k

o Example: k =3 = d' = (?}*) = (*%) = 10 monomials
z=(1, X1, X2, X2, XiXo, X5, X3, X2Xp, X1X5, X3)

e From Taylor’s theorem, we know that with k high enough we
can approximate any hypersurface by a linear combination
of the features in z

¢ |ssue 1: Computational complexity: More features, more
work

e |ssue 2: Sample complexity: More dimensions, more
training data (remember the curse)

e With SVMs, we can address both issues
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I e o s e
Sample Complexity from 30,000 Feet

e The more training samples we have, the better we
generalize

e With a larger N, the set T represents the model p(x, y)
better

e Sample complexity is a measure of how many training
samples (N) are needed to achieve some level of
performance (error rate)

e The sample complexity of a machine learning problem turns
out to grow with the dimensionality d of the data space X

e |t also grows as the target error rate decreases
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I e o s e
Sample Complexity for SVMs

e For a binary logistic-regression classifier, and given some
target level of performance (error rate), the sample
complexity grows linearly with the dimensionality d of X

¢ Not too bad, this is why linear classifiers are so successful
e SVMs with bounded data space X do even better
e “Bounded:” Contained in a hypersphere of finite radius

e For SVMs with bounded X, the sample complexity is
independent of d. No curse!

We can augment features to our heart's content
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I e o s e
What About Computational Complexity?

e Remember our plan: Go from x = (x4, X2) to
z=(1, xi, X2, X2, XiX2, X5, X2, X2X2, X1X5, X3)
in order to make the data separable

e Can we do this without paying the computational cost?

® Yes, with SVMs and kernels
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I il ol
Support Vector Machines Summary

¥ = h(x) = sign(w*"x + b*)
b*,w* € arg minpw Lr(W, b)

Lr(w,b) & TIw|2 + S SN max{0,1 — y(wx, + b)}
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I il ol
The Representer Theorem and Support

Vectors

e The representer theorem: w* =35 3.x,

e The separating-hyperplane parameter w is a linear
combination of the training data points X, € X C R
This is surprising, especially when N <« d
It turns out that only few of the 3, are nonzero
The corresponding data points x,, are called the support
vectors
These facts have important repercussions, so we will prove
them first

® Prove the representer theorem
® Show why many j, are zero
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A More General Version of the Representer
Theorem

e The theorem still holds if we generalize

1 Co &
Lr(w.b) = |wl?+ WO > " max{0,1 — yo(W'X, + b)}

n=1
to
L(w,b) = R(|lw[})+ S (w'x;+b, ..., WXy + b)
where
® R(-) is any strictly increasing function R* — R
e S(ay,...,ay) s any function RN — R

COMPSCI 371D — Machine Learning 13/33



ol A o sl
Proof of the Representer Theorem
o If L(w,b) = R(|w||)+S(W'x; +b, ..., WXy +b)

where R(-) is strictly increasing, then w* in
b*,w* = arg minpw L(W, b) satisfies

N
W= Z 5nxn
n=1
e Restate: If

N
W* — Z ﬁan + u
n=1

where X = span(Xy,...,Xy) and u € X+, thenu =0
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ol A o sl
Proof of the Representer Theorem, Cont’d

[L(w,b) = R(|w|)+S(W'x;+b, ..., Wxy+b)]
o |f

w
—

N
W= BX,+u
n=1

where X = span(Xy,...,Xy) andu € X+, thenu =0
By contradiction, assume u # 0

Pythagoras: wlu = |w*||?2 = ||w]]? + ||jul]?

uz0 = [wi <w|

R(-) increasing = R(||w||) < R(||w*||)
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ol A o sl
Proof of the Representer Theorem, Cont’d

[L(w,b) = R(|w|)+S(W'xs+b, ..., Wxy+b)]
e Sofar:u#£0 = R(|w|) < R(lw*|)
¢ Since u.lx,, we have
WX, +b = (W—u)"x,+b = (W) X,—u"x,+b = (W)X, +b

sothat S (W'x;+b, ..., Wxy+ b) =
S((w)™xy+b, ..., (W)"xy+b)

e Therefore, R(|w|)+ S (W'x;+ b, ..., Wxy+ b) <
R(Ilw*[) + S ((W*)"x; + b, ..., (W) Xy + b)

ie., L(w,b) < L(w*,b)forall b= L(w.b") < L(w", b")
e Contradiction: w* is not optimum
e Thereforeu =0andw* = -V 3,x,
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I il ol
For SVMs, Many g, are Zero

W' =30 BaXn o
e For SVMs, b*, w* minimize the |
average hinge loss plus 1 |lw|[?
e Samples that are classified
correctly with margin greater 1
than p* incur zero loss R

e The residual risk Lr(w*, b*) does
not depend on these samples \
e Therefore b*, w* do not depend
on them either

e Only samples that are either /’

misclassified or correctly classified
but with margin < * can be inw*  **  *
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ol A o sl
The Support Vectors

e Only samples that are either misclassified or correctly
classified but with margin less than p* can appear in w*

e These data points are called the support vectors

® Sparsity: W* =" o\, BnXn
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~ e Pepresenter Tneorem and Support Vectors
The Sign of the Nonzero 5,

W* =3 csv BnXn
With much heavier machinery (duality theory) it can be
proven that the sign of the nonzero 3, is yj:

Bn = yn|ﬁn|
We omit the proof in this course
There may be simpler proofs, | just couldn’t find one
If you come up with one let me know!
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ol A o sl
Consequences of the Representer Theorem

¢ Insights from support vectors

® Support vector machines are “more interpretable” than
logistic regression classifiers

e The kernel idea
® Feature augmentation without the computational cost
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N o e i Ul
SVMs and the Representer Theorem

e Recall the formulation of SVMs
e Augment x € R? to p(x) € RY, with o’ > d (typically)
e Optimal risk  Lr(w*, b*) =
w2+ S 5N max{0, 1 — ya((W*)T(Xn) + b*)}
e Do inference by computing j = h(x) = sign(w*"¢(X) + b*)
e Plug in representer theorem: w* = zL Bne(Xn)
Lr(w*, b*) = %Z%:1 ZL BmBne(Xm)T o (Xn) +
S 3 max {0.1 =y (s B (X)0(xa) + ") |
g = h(x) = sign (i, Sne(x0) 0 (x) + )

¢ Data points always show up in inner products, never alone
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~ KemelsandNonlinearsvMs
The Kernel

Lr(w", b%) = %2%21 25:1 BmbBnp(Xm) T o(Xn) +
G 3o max {0.1 =y (s B (x) 0(xa) + ") |

y = hix) = sign (S, Bup(x:) " 0(x) + ")

¢ Data points always show up in inner products, never alone

o The value K(Xm, Xn) & o(Xm) (X, is @ number

e Both training and inference need to know only K(Xn, X,),
not p(x,). K is called a kernel. Rewrite:

Lr(w*,0%) = 53 m s Sopey BBk (Xim. %) +
G s max {01 =y (Sh_y Bk (X, %) +b°) }

g = h(x) = sign (S0, 6K (x,.%) + ")
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N o e i Ul
Kernel Idea 1 (Minor)

e Start with some ¢(x) and use the kernel to save
computation

e Example: ¢(x) =
(1, xi, X, X2, XiX2, X2, X3, x2xp, xix2, X3)
e Don’t know how to simplify. Try this: ¢(x) =
(1, V3x1, V3xz2, V3x2, VBxix2, V3x3, X3, V3X2xz2, V3x1x5 , X3)
e Can show (see notes) that
K(x,x') = p(X) p(x') = (x"x' +1)°
e Something similar works for any d and k
¢ 4 products and 2 sums instead of 10 products and 9 sums

e Meager savings, but grows exponentially with d and k, as
we know
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L Kemeisond ontieer SV |
Kernel Idea 2 (Major!)

e Just come up with K(x, x’) such that there exists ¢(x) for
which K(x,x') = ¢ (X)e(X'), but without knowing the
corresponding ¢(X)

e Not just any K. Must behave like an inner product

e Forinstance, ¢ (X)p(X') = ¢ (X')e(x) and
(" (x)p(x))? < [lp(X)II? [l (x)|Z
(symmetry and Cauchy-Schwartz), so we need at least
K(x,x') = K(x',x) and K2(x,x') < K(x,x) K(x',x')

e These conditions are necessary, but they are not sufficient

e Fortunately, there is a theory for this
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~MercersConditions
Mercer Conditions

* K(x,x') : RY xR? — Ris a kernel function if there exists ¢
for which K(x,x) = ¢(x)"¢(X')

e Finite case: Givenx, e R9forn=1,....N(asin T), a
symmetric function K(x, x’) is a kernel function on that set
iff the N x N matrix A = [K(X;, X;)] is positive semi-definite

e Problem: We would like to know if K(x,x’) is a kernel for
any T, or even for x we have not yet seen

e Infinite case: K(x,x’) is a kernel function iff
for every f : RY — R s.t. [pa f(X) dx s finite,
fRdXRdK(x xX') f(x) f(x )dxdx 2 0

¢ Immediate extension of positive-semidefiniteness to the
continuous case
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~ MercersConditons _
The “Kernel Trick”

e There is a theory for checking the Mercer conditions
algorithmically (eigenfunctions instead of eigenvectors)

e There is a calculus for how to build new kernel functions
¢ A whole cottage industry tailors kernels to problems

e This is rather tricky. However, the Gaussian kernel is very
popular

2
[Ix—x"]]

Kx,x')=e 2
¢ A measure of similarity between x and x’
e Gaussian kernels are also called Radial Basis Functions
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I = ek e ol
Kernels and Support Vectors

Recall: Decision rule for SVM is h(x) = sign((w*)¢(x) + b)
(in transformed space, where the SVM is linear)

The separating hyper-plane is (W*) (x) + b =10

From representer theorem, w* = 3" B¢ (Xn)

where the sum is over support vectors only

Therefore the separating hyperplane is

don Be(Xn)T(X) +b =0

Thatis, >, 5,K(x,,x)+b =0

X, and x are in the original data space X

This equation describes the decision boundary induced in
the original data space X

An affine boundary in ¢(X) is a nonlinear boundary in X
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I = ek e ol
The “Kernel Trick:” Summary, Part 1

In a linear SVM, feature vectors x always

show up in inner products: x/x,, or x/x

If features are augmented, x — ¢(X), also ¢(x) always
shows up in inner products: ¢(Xm,) ¢ (X,) or ¢(X,) " (X)
Define a kernel K(x, x’) such that there exists an (often
unknown) mapping ¢() for which

K(x,X') = o(x) p(X)

We always work with K(x, x’) without ever involving ¢(x) or
@(x’) (which are large, possibly infinite)

We avoid the computational cost of feature augmentation
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| cousslanKemelsand SupportVectors |
The “Kernel Trick:” Summary, Part 2

e Given K(x,X’) there exists a mapping () for which

K(x,X') = o (x) "o (X)

iff K satisfies the Mercer condition

¢ We saw a finite version of the condition given a specific
data set and an infinite version that considers K only,
regardless of what data it is used on

¢ This condition can be verified through eigenvalue (finite
case) or eigenfunction (infinite case) computations
¢ Important example: The Radial Basis Function (RBF)

fox/ 2

K(x,x') = e -2 can be proven to be a kernel
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I = ek e ol
Training a Kernel SVM

¢ Recall that the representer theorem lets us rewrite the risk
as follows: Lt = 1570 S™N B0 8,K (Xm, X,) +
& > max {0,1 = yn (Shy Bk (X, X,) + b) |

e w has been replaced by the gs: Lt(3, b), where
/6: (ﬁh"'?BN)

e Still convex in the arguments, so we can use (stochastic)
gradient descent

e Only the gs corresponding to support vectors are nonzero
at the end, so we just keep 8 = (B, - - -, Bk, ) if there are s
support vectors

¢ Yields B (with s entries) and b*
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Gaussian Kernels and Support Vectors
e What does the decision boundary look like with RBFs?
¢ The decision boundary in the original space is
Yo BeK(Xn,X)+b* =0
where the sum is over support vectors

2
_ lx=xn]|

e ForRBF SVMs, >~ gre” 2 = —b*
e Simple geometric interpretation
¢ Recall that the sign of 5} is y,
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~ GaussianKemelsand Support Vectors
Classification

http://mldemos.bd4silio.com
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I e e el
Regression

http://mldemos.bdsilio.com
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