Decision Trees and Forests

COMPSCI 371D — Machine Learning
Outline

1. Motivation
2. Recursive Splits and Trees
3. Prediction
4. Purity
5. Splitting
6. Forests: Bagging and Randomization
7. Forest Training and Inference
8. Out-of-Bag Statistical Risk Estimate
Motivation

Linear Predictors \rightarrow Trees \rightarrow Forests

- **Linear predictors:**
 - Few parameters \rightarrow Good generalization, efficient training
 - Convex risk \rightarrow Unique minimum risk, easy optimization
 - Score-based \rightarrow Measure of confidence
 - Few parameters \rightarrow Limited expressiveness

- **SVMs + kernels:**
 - All of the advantages of linear predictors
 - Boundaries are nonlinear
 - Need to design kernels to shape the boundary

- **Decision trees:**
 - Arbitrarily expressive: Flexible, but generalizes poorly
 - Interpretable: We can audit a decision

- **Random decision forests:**
 - Ensembles of trees that vote on an answer
 - Expressive (somewhat less than trees), generalize well
Splitting X Recursively

![Graph showing splitting recursively]
A Decision Tree

Choose splits to maximize purity
What’s in a Node

• Internal:
 • Split parameters: Dimension $j \in \{1, \ldots, d\}$, threshold $t \in \mathbb{R}$
 • Pointers to children, corresponding to subsets of S:

 $L \stackrel{\text{def}}{=} \{(x, y) \in S \mid x_j \leq t\}$
 $R \stackrel{\text{def}}{=} \{(x, y) \in S \mid x_j > t\}$

• Leaf: Distribution of training values y in this subset of X:

 p, discrete for classification, histogram for regression

• At inference time, return a summary of p as the value for the leaf

 • Mode (majority) for a classifier
 • Mean or median for a regressor
 (Remember k-NN?)
Why Store p?

- Can’t we just store $\text{summary}(p)$ at the leaves?
- With p, we can compute a confidence value.
- (More important) We need p at every node during training to evaluate purity.
Prediction

function \(y \leftarrow \text{predict}(x, \tau, \text{summary}) \)
 if leaf? (\(\tau \)) then
 return \(\text{summary}(\tau.p) \)
 else
 return \(\text{predict}(x, \text{split}(x, \tau), \text{summary}) \)
 end if
end function

function \(\tau \leftarrow \text{split}(x, \tau) \)
 if \(x_{\tau.j} \leq \tau.t \) then
 return \(\tau.L \)
 else
 return \(\tau.R \)
 end if
end function
Design Decisions for Training

- How to define (im)purity
- How to find optimal split parameters j and t
- When to stop splitting
Purity

Impurity Measure 1: The Error Rate

• Simplest option: \(i(S) = \overline{err}(S) = 1 - \max_y p(y|S) \)

• \(S \): subset of \(T \) that reaches the given node

• Interpretation:
 • Put yourself at node \(\tau \)
 • The distribution of training-set labels that are routed to \(\tau \) is that of the labels in \(S \)
 • If the distribution is representative:
 • The best the classifier can do is to pick the label with the highest fraction, \(\max_y p(y|S) \)
 • \(\overline{err}(S) \) is \textit{the probability that the classifier is wrong at } \(\tau \)
 (empirical risk)
Impurity Measure 2: The Gini Index

- A classifier that always picks the most likely label does best at inference time
- However, it ignores all other labels at training time
 \[p = [0.5, 0.49, 0.01] \] same error rate as \[q = [0.5, 0.25, 0.25] \]
- In \(p \), we have almost eliminated the third label
- \(q \) closer to uniform, perhaps less desirable
- For evaluating splits (only), consider a stochastic predictor:
 \[\hat{y} = h_{\text{Gini}}(x) = y \text{ with probability } p(y|S) \]
- The Gini index measures the empirical risk for the stochastic predictor (looks at all of \(p \), not just \(p_{\text{max}} \))
- Says that \(p \) is a bit better than \(q \): \(p \) is less impure than \(q \)
- \(i(S_p) \approx 0.51 \) and \(i(S_q) \approx 0.62 \)
The Gini Index

- **Stochastic predictor:**
 \[\hat{y} = h_{\text{Gini}}(x) = y \text{ with probability } p(y|S) \text{ for } y \in Y \]

- What is the empirical risk for \(h_{\text{Gini}} \)?

- Answer \(\hat{y} \) is chosen to be \(y \) with probability \(p(y|S) \)

- When the answer is \(y \), it is wrong with probability
 \[\approx 1 - p(y|S) \] (fraction of training samples that have true answer \(y \))

- Therefore, impurity defined as the empirical risk of \(h_{\text{Gini}} \) is
 \[i(S) = L_S(h_{\text{Gini}}) = \sum_{y \in Y} p(y|S)(1 - p(y|S)) = 1 - \sum_{y \in Y} p^2(y|S) \]
How to Split

- Split at training time:
 If training subset S made it to the current node, put all samples in S into either L or R by the split rule

- Split at inference time: Send x either to $\tau.L$ or to $\tau.R$

- Either way:
 - Choose (training) or retrieve (inference) a dimension j in $\{1, \ldots, d\}$
 - Choose (training) or retrieve (inference) a threshold t
 - Any data point for which $x_j \leq t$ goes to $\tau.L$
 - All other points go to $\tau.R$

- How to pick j and t at training time?
How to Pick j and t at Each Node?

- Try all possibilities and pick the best
- “Best:” Maximizes the decrease in impurity:
 \[\Delta i(S, L, R) = i(S) - \frac{|L|}{|S|}i(L) - \frac{|R|}{|S|}i(R) \]
- “All possibilities:” Choices are finite in number
 - Sorted unique values in x_j across T: $x_j^{(0)}, \ldots, x_j^{(u_j)}$
 - Possible thresholds: $t = t_j^{(1)}, \ldots, t_j^{(u_j)}$

 where $t_j^{(\ell)} = \frac{x_j^{(\ell-1)} + x_j^{(\ell)}}{2}$ for $\ell = 1, \ldots, u_j$

- Nested loop: for $j = 1, \ldots, d$
 for $t = t_j^{(1)}, \ldots, t_j^{(u_j)}$

- Efficiency hacks are possible
Stopping too Soon is Dangerous

- Temptation: Stop when impurity does not decrease
When to Stop Splitting

• Possible stopping criteria
 • Impurity is zero
 • Too few samples in either L or R
 • Maximum depth reached

• Overgrow the tree, then prune it

• There is no optimal pruning method
 (Finding the optimal tree is NP-hard)
 (Reduction from set cover problem, Hyafil and Rivest)

• Better option: Random Decision Forests
Summary: Training a Decision Tree

- Use exhaustive search at the root of the tree to find the dimension j and threshold t that splits T with the biggest decrease in impurity
- Store j and t at the root of the tree
- Make new children with L and R
- Repeat on the two subtrees until some criterion is met
Summary: Predicting with a Decision Tree

- Use $\tau.j$ and $\tau.t$ at the root τ to see if x belongs in $\tau.L$ or $\tau.R$
- Go to the appropriate child
- Repeat until a leaf is reached
- Return $\text{summary}(p)$
- summary is majority for a classifier, mean or median for a regressor
From Trees to Forests

- Trees are flexible \rightarrow good expressiveness
- Trees are flexible \rightarrow poor generalization
- Pruning is an option, but messy and heuristic
- *Random Decision Forests* let several trees vote
- Use the bootstrap to give different trees different views of the data
- Randomize split rules to make trees even more independent
Random Forests

- M trees instead of one
- Train trees to completion (perfectly pure leaves) or to near completion (few samples per leaf)
- Give tree m training bag B_m
 - Draw $|T|$ training samples independently at random with replacement out of T
 - $|B_m| = |T|$
 - About 63% of samples from T are in B_m
- Make trees more independent by randomizing split dim:
 - Original trees: for $j = 1, \ldots, d$
 - for $t = t_j^{(1)}, \ldots, t_j^{(u_j)}$
 - Forest trees: $j = \text{random out of } 1, \ldots, d$
 - for $t = t_j^{(1)}, \ldots, t_j^{(u_j)}$
Randomizing Split Dimension

\[j = \text{random out of } 1, \ldots, d \]
for \[t = t_j^{(1)}, \ldots, t_j^{(u_j)} \]

- Still search for the optimal threshold
- Give up optimality for independence
- Dimensions are revisited anyway in a tree
- Tree may get deeper, but still achieves zero training risk
- Independent splits and different data views lead to good generalization when voting
- Bonus: training a single tree is now \(d \) times faster
Training

function $\phi \leftarrow \text{trainForest}(T, M)$ \hspace{1cm} ▶ M is the desired number of trees

$\phi \leftarrow \emptyset$ \hspace{1cm} ▶ The initial forest has no trees

for $m = 1, \ldots, M$ do

$S \leftarrow |T|$ samples unif. at random out of T with replacement

$\phi \leftarrow \phi \cup \{\text{trainTree}(S, 0)\}$ \hspace{1cm} ▶ Slightly modified trainTree

end for

end function
Inference

\[
\text{function } y \leftarrow \text{forestPredict}(x, \phi, \text{summary}) \\
V = \{ \} \quad \triangleright \text{A set of values, one per tree, initially empty} \\
\text{for } \tau \in \phi \text{ do} \\
\quad y \leftarrow \text{predict}(x, \tau, \text{summary}) \quad \triangleright \text{The predict function for trees} \\
\quad V \leftarrow V \cup \{y\} \\
\text{end for} \\
\text{return } \text{summary}(V) \\
\text{end function}
\]
Out-of-Bag Statistical Risk Estimate

- Random forests have “built-in” training/validation or training/testing splits
- Tree m: B_m for training, $V_m = T \setminus B_m$ for testing
- h_{oob} is a predictor that works only for $(x_n, y_n) \in T$:
 - Let tree m vote for y only if $x_n \notin B_m$
 - $h_{oob}(x_n)$ is the summary of the votes over participating trees
 - Summary: majority (classification); mean, median (regression)
- Out-of-bag risk estimate:
 - $T' = \{ t \in T \mid \exists m \text{ such that } t \notin B_m \}$
 (samples that were left out of some bag, so some trees can vote on them)
 - Statistical risk estimate: empirical risk of h_{oob} over T':
 $L_{T'}(h_{oob}) = \frac{1}{|T'|} \sum_{(x, y) \in T'} \ell(y, h_{oob}(x))$
$T' \approx T$

- $L_{T'}(h_{oob})$ can be shown to be an unbiased estimate of the statistical risk
- No separate test set needed if T' is large enough
- How big is T'?
- $|T'|$ has a binomial distribution over N points, $p = 1 - (1 - 0.37)^M \approx 1$ as soon as $M > 20$
- p = probability that a sample is not included in all bags (so it gets an OOB prediction)
- Mean $\mu = pN$, variance $\sigma^2 = p(1 - p)N$
- $\sigma/\mu = \sqrt{\frac{1-p}{pN}} \rightarrow 0$ quite rapidly with growing M and N
- For large M, N, the size of T' is very predictably close to N: All samples in T are also in T' nearly always
Summary of Random Forests

- Random views of the training data by bagging
- Independent decisions by randomizing split dimensions
- Ensemble voting leads to good generalization
- Number M of trees tuned by OOB validation
- OOB estimate can replace final testing
- (In practice, that won’t fly for papers)
- More efficient to train than a single tree if $M < d$
- Still rather efficient otherwise, and parallelizable
- *Conceptually simple, easy to adapt to different problems*
- Lots of freedom about split rule
- Example: Hybrid regression/classification problems