
Training Neural Nets

COMPSCI 371D — Machine Learning

COMPSCI 371D — Machine Learning Training Neural Nets 1 / 21

Outline

1 The Softmax Simplex

2 Loss and Risk

3 Back-Propagation

4 Stochastic Gradient Descent

COMPSCI 371D — Machine Learning Training Neural Nets 2 / 21

The Softmax Simplex

The Softmax Simplex
• Neural-net classifier: ŷ = h(x) : X ⊆ Rd → Y
• The last layer of a neural net used for classification is a

soft-max layer
p = σ(z) = exp(z)

1T exp(z)

• The net is p = f (x,w) : X → P
• The classifier is ŷ = h(x) = arg max p = arg max f (x,w)

• P is the set of all nonnegative real-valued vectors p ∈ Re

whose entries add up to 1 (with e = |Y |):

P def
= {p ∈ Re : p ≥ 0 and

e∑
c=1

pc = 1} .

COMPSCI 371D — Machine Learning Training Neural Nets 3 / 21

The Softmax Simplex

P def
= {p ∈ Re : p ≥ 0 and

∑e
i=1 pi = 1}

p
1

p
2

1

1

1/2

1/2

1/3

1/3

1/3

1

1

1

p
3

p
1

p
2

• Decision regions are polyhedral:
Pc = {pc ≥ pj for j 6= c} for c = 1, . . . ,e
• A network transforms images into points in P

COMPSCI 371D — Machine Learning Training Neural Nets 4 / 21

Loss and Risk

Loss and Risk (Déjà Vu)

• Ideal loss would be 0-1 loss on network output ŷ
• 0-1 loss is constant where it is differentiable!
• Not useful for computing a gradient
• Use cross-entropy loss on the softmax output p as a proxy

loss
`(y ,p) = − log py

• Risk, as usual:
LT (w) = 1

N

∑N
n=1 `n(w) where `n(w) = `(yn, f (xn,w))

• We need ∇LT (w) and therefore ∇`n(w)

COMPSCI 371D — Machine Learning Training Neural Nets 5 / 21

Back-Propagation

Back-Propagation

(1)f f (2) f (3)

w(1) w(2) w(3)

(1)x (2)x (3)x = p(0)xn x= l n

ny

l

• We need ∇LT (w) and therefore ∇`n(w) = ∂`n
∂w

• Computations from x to `n form a chain
• Apply the chain rule
• Every derivative of `n w.r.t. layers before k goes through x(k)

∂`n
∂w(k) = ∂`n

∂x(k)
∂x(k)

∂w(k)

∂`n
∂x(k−1) = ∂`n

∂x(k)
∂x(k)

∂x(k−1) (recursion!)
• Start: ∂`n

∂x(K) = ∂`
∂p

COMPSCI 371D — Machine Learning Training Neural Nets 6 / 21

Back-Propagation

Local Jacobians
(1)f f (2) f (3)

w(1) w(2) w(3)

(1)x (2)x (3)x = p(0)xn x= l n

ny

l

• Local computations at layer k : ∂x(k)

∂w(k) and ∂x(k)

∂x(k−1)

• Partial derivatives of f (k) with respect to layer weights and
input to the layer
• Local Jacobian matrices, can compute by knowing what the

layer does
• The start of the process can be computed from knowing the

loss function, ∂`n
∂x(K) = ∂`

∂p
• Another local Jacobian
• The rest is going recursively from output to input, one layer

at a time, accumulating ∂`n
∂w(k) into a vector ∂`n

∂w

COMPSCI 371D — Machine Learning Training Neural Nets 7 / 21

Back-Propagation

The Forward Pass

(1)f f (2) f (3)

w(1) w(2) w(3)

(1)x (2)x (3)x = p(0)xn x= l n

ny

l

• All local Jacobians, ∂x(k)

∂w(k) and ∂x(k)

∂x(k−1) , are computed
numerically for the current values of weights w(k) and layer
inputs x(k−1)

• Therefore, we need to know x(k−1) for training sample n and
for all k
• This is achieved by a forward pass through the network:

Run the network on input xn and store x(0) = xn, x(1), . . .

COMPSCI 371D — Machine Learning Training Neural Nets 8 / 21

Back-Propagation

Back-Propagation Spelled Out for K = 3

(1)f f (2) f (3)

w(1) w(2) w(3)

(1)x (2)x (3)x = p(0)xn x= l n

ny

l
∂`n

∂w(k)
=

∂`n

∂x(k)

∂x(k)

∂w(k)

∂`n

∂x(k−1)
=

∂`n

∂x(k)

∂x(k)

∂x(k−1)

(after forward pass)
∂`n
∂x(3) = ∂`

∂p
∂`n
∂w(3) = ∂`n

∂x(3)
∂x(3)

∂w(3)

∂`n
∂x(2) = ∂`n

∂x(3)
∂x(3)

∂x(2)

∂`n
∂w(2) = ∂`n

∂x(2)
∂x(2)

∂w(2)

∂`n
∂x(1) = ∂`n

∂x(2)
∂x(2)

∂x(1)

∂`n
∂w(1) = ∂`n

∂x(1)
∂x(1)

∂w(1)(
∂`n
∂x(0) = ∂`n

∂x(1)
∂x(1)

∂x(0)

)

∂`n
∂w =


∂`n
∂w(1)

∂`n
∂w(2)

∂`n
∂w(3)


(Jacobians in blue are local,
those in red are what we
want eventually)

COMPSCI 371D — Machine Learning Training Neural Nets 9 / 21

Back-Propagation

Computing Local Jacobians

f (k)

w(k)

(k-1)x (k)x

∂x(k)

∂w(k) and
∂x(k)

∂x(k−1)

• Easier to make a “layer” as simple as possible
• z = Vx + b is one layer (Fully Connected (FC), affine part)
• z = ρ(x) (ReLU) is another layer
• Softmax, max-pooling, convolutional,...

COMPSCI 371D — Machine Learning Training Neural Nets 10 / 21

Back-Propagation

Local Jacobians for a FC Layer

z = Vx + b
• ∂z

∂x = V (easy!)
• ∂z

∂w : What is ∂z
∂V ? Three subscripts: ∂zi

∂vjk
. A 3D tensor?

• For a general package, tensors are the way to go
• Conceptually, it may be easier to vectorize everything:

V =

[
v11 v12 v13

v21 v22 v23

]
, b =

[
b1

b2

]
→

w = [v11, v12, v13, v21, v22, v23,b1,b2]T

• ∂z
∂w is a 2× 8 matrix

• With e outputs and d inputs, an e × e(d + 1) matrix

COMPSCI 371D — Machine Learning Training Neural Nets 11 / 21

Back-Propagation

Jacobianw for a FC Layer[
z1

z2

]
=

[
w1 w2 w3

w4 w5 w6

] x1

x2

x3

+

[
w7

w8

]
• Don’t be afraid to spell things out:

z1 = w1x1 + w2x2 + w3x3 + w7

z2 = w4x1 + w5x2 + w6x3 + w8

∂z
∂w =

[
∂z1
∂w1

∂z1
∂w2

∂z1
∂w3

∂z1
∂w4

∂z1
∂w5

∂z1
∂w6

∂z1
∂w7

∂z1
∂w8

∂z2
∂w1

∂z2
∂w2

∂z2
∂w3

∂z2
∂w4

∂z2
∂w5

∂z2
∂w6

∂z2
∂w7

∂z2
∂w8

]
∂z
∂w =

[
x1 x2 x3 0 0 0 1 0
0 0 0 x1 x2 x3 0 1

]
• Obvious pattern: Repeat xT , staggered, e times
• Then append the e × e identity at the end

COMPSCI 371D — Machine Learning Training Neural Nets 12 / 21

Stochastic Gradient Descent

Training

• Compute ∇`n(w) = ∇`(yn,h(xn; w))

• Loop over T to compute ∇LT (w) = 1
N

∑N
n=1∇`n(w)

• ŵ = arg min LT (w)

• LT (w) is (very) non-convex, so we look for local minima
• w ∈ Rm with m very large: No Hessians
• Gradient descent
• Even so, every step calls back-propagation N times
• Back-propagation computes m derivatives ∇`n(w)

• Computational complexity is Ω(mN) per step
• Even gradient descent is way too expensive!

COMPSCI 371D — Machine Learning Training Neural Nets 13 / 21

Stochastic Gradient Descent

No Line Search
• Line search is out of the question
• Fix some step multiplier α, called the learning rate

wt+1 = wt − α∇LT (wt)

• How to pick α? Cross-validation is too expensive
• Tradeoffs:

• α too small: Slow progress
• α too big: Jump over minima

• Frequent practice:
• Start with α relatively large, and monitor LT (w)
• When LT (w) levels off, decrease α

• Alternative: Fixed decay schedule for α
• Another (recent) option: Change α adaptively

(Adam, 2015, later improvements)

COMPSCI 371D — Machine Learning Training Neural Nets 14 / 21

Stochastic Gradient Descent

Manual Adjustment of α
• Start with α relatively large, and monitor LT (wt)

• When LT (wt) levels off, decrease α
• Typical plots of LT (wt) versus iteration index t :

risk

COMPSCI 371D — Machine Learning Training Neural Nets 15 / 21

Stochastic Gradient Descent

Batch Gradient Descent (Review)

• We have seen GD and SGD under function optimization
• We review these as they are crucial for neural networks
• ∇LT (w) = 1

N

∑N
n=1∇`n(w)

• Taking a macro-step −α∇LT (wt) is the same as
taking the N micro-steps − α

N∇`1(wt), . . . ,− α
N∇`N(wt)

• First compute all the N steps at wt , then take all the steps
• Thus, standard gradient descent is a batch method:

Compute the gradient at wt using the entire batch of data,
then move
• Even with no line search, N micro-steps are expensive
• Can we spend the same amount of effort more effectively?

COMPSCI 371D — Machine Learning Training Neural Nets 16 / 21

Stochastic Gradient Descent

Stochastic Gradient Descent (Review)
• Taking a macro-step −α∇LT (wt) is the same as

taking the N micro-steps − α
N∇`1(wt), . . . ,− α

N∇`N(wt)

• First compute all the N steps at wt , then take all the steps
• Can we spend the same amount of effort more effectively?
• Key observation: −∇`n(w) is a poor estimate of −∇LT (w),

but an estimate all the same: Micro-steps are correct on
average!
• After each micro-step, we are on average in a better place
• How about computing a new micro-gradient after every

micro-step?
• Now each micro-step gradient is evaluated at a point that is

on average better (lower risk) than in the batch method

COMPSCI 371D — Machine Learning Training Neural Nets 17 / 21

Stochastic Gradient Descent

Batch vs Stochastic GD (Review)
• sn(w) = − α

N∇`n(w)

• Batch:
• Compute s1(wt), . . . ,sN(wt)
• Move by s1(wt), then s2(wt), . . . then sN(wt)

(or equivalently move once by s1(wt) + . . .+ sN(wt))
• Stochastic (SGD):

• Compute s1(wt), then move by s1(wt) from wt to w(1)
t

• Compute s2(w
(1)
t), then move by s2(w

(1)
t) from w(1)

t to w(2)
t

...
• Compute sN(w

(N−1)
t), then move by sN(w

(N−1)
t) from w(N−1)

t

to w(N)
t = wt+1

• In SGD, each micro-step is taken from a better (lower risk)
place on average than in batch descent

COMPSCI 371D — Machine Learning Training Neural Nets 18 / 21

Stochastic Gradient Descent

Why “Stochastic?” (Review)
• Progress occurs only on average
• Many micro-steps are bad, but they are good on average
• Progress is a random walk

https://towardsdatascience.com/

COMPSCI 371D — Machine Learning Training Neural Nets 19 / 21

https://towardsdatascience.com/

Stochastic Gradient Descent

Reducing Variance: Mini-Batches (Review)
• Each data sample is a poor estimate of T : High-variance

micro-steps
• Each micro-step take full advantage of the estimate, by

moving right away: Lower-bias micro-steps than batch steps
• High variance may hurt more than low bias helps
• Can we lower variance at the expense of slightly increased

bias?
• Average B samples at a time: Take mini-steps
• With bigger B,

• Higher bias
• Lower variance

• The B samples are a mini-batch

COMPSCI 371D — Machine Learning Training Neural Nets 20 / 21

Stochastic Gradient Descent

Mini-Batches (Review)
• Scramble T at random (T has N samples)
• Divide T into J mini-batches Tj of size B, so N ≈ JB
• w(0) = w
• For j = 1, . . . , J:

• Batch gradient:
gj = ∇LTj (w

(j−1)) = 1
B
∑jB

n=(j−1)B+1∇`n(w
(j−1))

• Move: w(j) = w(j−1) − αgj

• This for loop amounts to one macro-step
• Each execution of the entire loop uses the training data

once
• Each execution of the entire loop is an epoch
• Repeat over several epochs until a stopping criterion is met

COMPSCI 371D — Machine Learning Training Neural Nets 21 / 21

	The Softmax Simplex
	Loss and Risk
	Back-Propagation
	Stochastic Gradient Descent

