Training Neural Nets

COMPSCI 371D — Machine Learning

= & - = = 9aex
COMPSCI 371D — Machine Learning

N
Outline

© The Softmax Simplex
® Loss and Risk
©® Back-Propagation

O Stochastic Gradient Descent

COMPSCI 371D — Machine Learning 2/21

. Theselmaxsmpler
The Softmax Simplex

* Neural-net classifier: = h(x) : X CR? —» Y

¢ The last layer of a neural net used for classification is a
soft-max layer
p=0(2) = 7euy

e Thenetisp="f(x,w) : X—> P

e The classifier is y = h(x) = arg maxp = arg max f(X, W)

e P is the set of all nonnegative real-valued vectors p € R®
whose entries add up to 1 (with e = | Y):

e
Pd:ef{peRe :p>0 and ch:1}.

c=1

COMPSCI 371D — Machine Learning 3/21

N el
Pd:ef{pE]Re :p>0and Y7, p=1}

4

1

12

12 1 4

¢ Decision regions are polyhedral:
Pe={pc.>p; for j#c} for c=1,...,e
¢ A network transforms images into points in P

COMPSCI 371D — Machine Learning 4/21

e
Loss and Risk (Déja Vu)

e |deal loss would be 0-1 loss on network output y

e 0-1 loss is constant where it is differentiable!

¢ Not useful for computing a gradient

e Use cross-entropy loss on the softmax output p as a proxy
loss

E(y’ p) - - |ngy
¢ Risk, as usual:

Lr(w) = 30 €a(W) where n(W) = £(yp, f(X,, W))
e We need VLr(w) and therefore V/,(w)

COMPSCI 371D — Machine Learning 5/21

vl
Back-Propagation

Xn = X(O) X(I) X(Z) X(3)= p gn
_ f(l) — f(z)] f(3) > [4 —
w(l w? w Y,
e We need VLr(w) and therefore V/,(w) = %
e Computations from x to ¢, form a chain
e Apply the chain rule
e Every derivative of ¢, w.r.t. layers before k goes through x(¥)
oty __ 0t 9xH
owk) T ax(k) ow(k)
oy __ 0ty _9xk) i
ST = B gk (recursion!)
. Obh O

COMPSCI 371D — Machine Learning 6/21

. sadkPropagation
Local Jacobians

x,=x© x@ x@ x®=p ‘,
3 f(1) . f(2) o~ f(3) I L
w(]) W(Z) W(3) yn

: . ox0 axk)
* Local computations at layer k: ' and 57—

e Partial derivatives of f*) with respect to layer weights and
input to the layer

¢ Local Jacobian matrices, can compute by knowing what the
layer does

¢ The start of the process can be computed from knowing the
loss function, & = &

¢ Another local Jacobian

e The rest is going recursively from output to input, one layer

i i 0ln o
at a time, accumulating s=4; into a vector 42

COMPSCI 371D — Machine Learning 7/21

.~ sackPropagation
The Forward Pass

X, =x x@ x@ x¥=p ‘,
—f o fO o 1O oS ¢ —-
wb w wi y,

* All local Jacobians, 2% and -2, are computed

8X(k 1
numerically for the current values of welghts w) and layer

inputs xx—1)

e Therefore, we need to know x(*~" for training sample n and
for all k

e This is achieved by a forward pass through the network:
Run the network on input X, and store x(© = x,,, x(",

COMPSCI 371D — Machine Learning 8/21

N vzl
Back-Propagation Spelled Out for K = 3

)

X x@ x@ x¥=p ‘o Oln Oty Ox (k)
MR T e = s

Wi W w0 Y, ox(k=1) ox(k) ox(k=1)

(after forward pass)

oL or _Otn_
ax('é) == 3_p ow()
o, 9ty 9xB)

ow® — ax® Hwd) Oln | _Oln_
oty 8tp 5xB ow ow®
ax(@ T ax®) 9x(3)

oly __ 9tp ox2 9y
ow@ T ax(@ ow(2) ow)
An . Bty 9x?

ax(1) 7 ax@ ox(1) . .
oty ot ox((Jacobians in blue are local,

ow() T ox() 8W()

8y 9ty ox(M)
ax©0) T ox(1) 9x(0)

those in red are what we
) want eventually)

COMPSCI 371D — Machine Learning 9/21

Computing Local Jacobians

x(*D)

x™®

— f(k) —

T

w

ox (k)

ox (k)

owm N9 G

z = p(x) (ReLU) is another layer

Easier to make a “layer” as simple as possible
z = Vx + b is one layer (Fully Connected (FC), affine part)

Softmax, max-pooling, convolutional,...

COMPSCI 371D — Machine Learning

10/21

. seckPropagaion
Local Jacobians for a FC Layer

z=Vx+b
o ZZ_V (easy')
o 82 : What i |s Z ? Three subscripts: az'k. A 3D tensor?

° For a general package, tensors are the way to go
e Conceptually, it may be easier to vectorize everything:

V:|:V11 Viz V13] 7 b:[b1}_>

Vor Voo Vo3 b2
W = [Vi1, Vi2, Vi3, Va1, Vo, Vog, b1,b2]T
e 22 s a2 x 8 matrix
e With e outputs and d inputs, an e x e(d + 1) matrix

COMPSCI 371D — Machine Learning 11/21

. seckPropagaion
Jacobiany, for a FC Layer

X4
z Wy We W W
HEFrEdIEIN
Zo Wiy Ws We Ws
X3
e Don’t be afraid to spell things out:
Z1 = Wi Xy + WoXo + W3 X3 + Wy

Zo = WyXq + Ws5Xo + WgX3 + Wg

[%%%%%%%%]
Jz

0z owy Owp, Owg Owy Ows Owg Owy Owg
ow

02y 0z 0z 02 02 02 0z 0z
owy Own Owg Owy Ows Owg Owy Owg

oz _ X1 Xo X3O 0O 010
ow 0 O OX1 Xo X301

e Obvious pattern: Repeat x”, staggered, e times
e Then append the e x e identity at the end

COMPSCI 371D — Machine Learning 12/21

| ShstcondentDut |
Training

e Compute VZp(W) = VI(¥n, h(Xn; W))

e Loop over T to compute VLr(w) = L S0 Vi, (w)

® W = argmin Lr(w)

e [r(w) is (very) non-convex, so we look for local minima
e w ¢ R" with m very large: No Hessians

e Gradient descent

e Even so, every step calls back-propagation N times

e Back-propagation computes m derivatives V/,(w)

e Computational complexity is Q(mN) per step

e Even gradient descent is way too expensive!

COMPSCI 371D — Machine Learning 13/21

No Line Search

e Line search is out of the question

¢ Fix some step multiplier «, called the learning rate
Wi =W —aVLr(wy)

How to pick «? Cross-validation is too expensive

Tradeoffs:

® o too small: Slow progress
® « too big: Jump over minima

Frequent practice:

e Start with « relatively large, and monitor L1(w)
* When L7(w) levels off, decrease «

Alternative: Fixed decay schedule for a
e Another (recent) option: Change « adaptively
(Adam, 2015, later improvements)

COMPSCI 371D — Machine Learning 14/21

Manual Adjustment of a
e Start with « relatively large, and monitor Lr(wy)
e When Lr(w;) levels off, decrease «
e Typical plots of Ly(w;) versus iteration index t:

risk

—— PInNets

1004 —— ResNets

101

102 4

1073 4

0 200 400 600 800 1000 1200
epoch

COMPSCI 371D — Machine Learning 15/21

| ShstcondentDut |
Batch Gradient Descent (Review)

e We have seen GD and SGD under function optimization
¢ We review these as they are crucial for neural networks
© VLr(w)= 5 n s V(W)
e Taking a macro-step —aVLr(w;) is the same as
taking the N micro-steps — 5, V{1 (Wy), ..., — 5 VEn(W;)
e First compute all the N steps at w;, then take all the steps

e Thus, standard gradient descent is a batch method:
Compute the gradient at w; using the entire batch of data,

then move
e Even with no line search, N micro-steps are expensive
e Can we spend the same amount of effort more effectively?

COMPSCI 371D — Machine Learning 16/21

| ShstcondentDut |
Stochastic Gradient Descent (Review)

Taking a macro-step —aVLr(wy) is the same as

taking the N micro-steps —§ V{1 (Wy), ..., — 5 VIn(W)

First compute all the N steps at w;, then take all the steps
Can we spend the same amount of effort more effectively?
Key observation: —V{,(w) is a poor estimate of —VLr(w),

but an estimate all the same: Micro-steps are correct on
average!

After each micro-step, we are on average in a better place
How about computing a new micro-gradient after every
micro-step?

Now each micro-step gradient is evaluated at a point that is
on average better (lower risk) than in the batch method

COMPSCI 371D — Machine Learning 17/21

| ShstcondentDut |
Batch vs Stochastic GD (Review)

e Batch:

* Compute s1(W;¢),...,Sn(W¢)
* Move by s1(w;), then sx(wy), ... then sy(w;)
(or equivalently move once by s1(W;) + ... + sy(W¢))

e Stochastic (SGD):
e Compute s1(W;¢), then move by s¢(w;) from w; to wp)
* Compute sg(w§1)), then move by s2(w§1)) from w§1) to wgz)
e Compute sN(ng_”), then move by sN(ng_1)) from ng_1)
to ng) = Wi yq
¢ In SGD, each micro-step is taken from a better (lower risk)
place on average than in batch descent

COMPSCI 371D — Machine Learning 18/21

s st el
Why “Stochastic?” (Review)

e Progress occurs only on average
e Many micro-steps are bad, but they are good on average
® Progress is a random walk

— Batch gradient descent
— Mini-batch gradient Descent
— Stochastic gradient descent

https://towardsdatascience.com/

COMPSCI 371D — Machine Learning 19/21

https://towardsdatascience.com/

| ShstcondentDut |
Reducing Variance: Mini-Batches (Review)

e Each data sample is a poor estimate of T: High-variance
micro-steps

e Each micro-step take full advantage of the estimate, by
moving right away: Lower-bias micro-steps than batch steps

e High variance may hurt more than low bias helps

e Can we lower variance at the expense of slightly increased
bias?

e Average B samples at a time: Take mini-steps

e With bigger B,

* Higher bias
® | ower variance

e The B samples are a mini-batch

COMPSCI 371D — Machine Learning 20/21

| ShstcondentDut |
Mini-Batches (Review)

e Scramble T at random (T has N samples)
Divide T into J mini-batches T; of size B, so N ~ JB
w0 =w
Forj=1,....J:

® Batch gradient:

g = VLT(w(/ Dy = an (-1)B1 Vin(wl=1)

* Move: w(/) =wl=" —ag;

This for loop amounts to one macro-step

Each execution of the entire loop uses the training data
once

e Each execution of the entire loop is an epoch
e Repeat over several epochs until a stopping criterion is met

COMPSCI 371D — Machine Learning 21/21

	The Softmax Simplex
	Loss and Risk
	Back-Propagation
	Stochastic Gradient Descent

