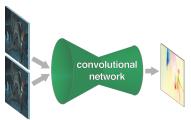
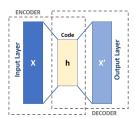
What We Did Not Cover

COMPSCI 371D — Machine Learning

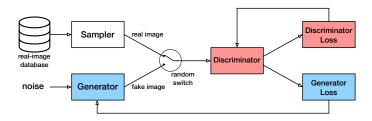

What We Did Not Cover

- Much More Detail
- Statistical Machine Learning
- Other Supervised Techniques
- 4 Reducing the Burden of Labeling
- 5 Unsupervised Methods
- 6 Addressing Multiple Learning Tasks Together
- Prediction over Time

Much More Detail


- Computationally efficient training algorithms:
 Optimization techniques
- Deep learning architectures for special problems: Image motion analysis, video analysis, ...

Beyond Discriminative Neural Networks


- Abstraction for its own sake: Auto-encoders
- A game-theoretical technique to draw from a distribution:
 Generative Adversarial Networks
- See also recent diffusion methods

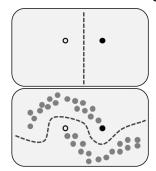
Which image is fake?

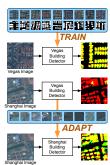
Generative Adversarial Networks

- Discriminator guesses if input is real or fake
- Discriminator loss penalizes wrong predictions
- Generator loss penalizes correct predictions
- After training keep only the generator

Statistical Machine Learning

- How to measure the size of H: Vapnik-Chervonenkis dimension, Rademacher complexity
- How large must T be to get an h that is within ϵ of a performance target with probability greater than 1δ : Probably Approximately Correct (PAC) learning
- H is *learnable* if there exists a size of T that is large enough for this goal to be achieved
- Which Hs are learnable?
- How large must S be to get a performance measure accurate within ε: Concentration bounds, statistical estimation theory, PAC-like techniques

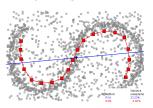

Other Supervised Techniques


- Boosting: How to use many bad predictors to make one good one
 Similar in principle to ensemble predictors, different assumptions and techniques
- Learning to rank
 Example: Learning a better God

Example: Learning a better Google

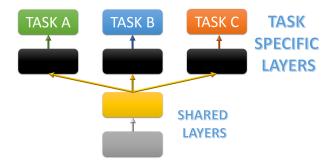
Reducing the Burden of Labeling

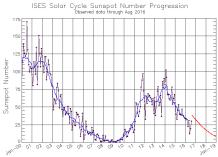
- Semi-supervised methods: Build models of the data x to leverage sparse labels y
- Domain adaptation: Train a classifier on source-domain labeled data (x, y) and target-domain unlableled data x so that it works well in the target domain



https://en.wikipedia.org

Unsupervised Methods


- Dimensionality reduction: Compressing $X \subseteq \mathbb{R}^d$ to $X' \subseteq \mathbb{R}^{d'}$ with $d' \ll d$
 - Principal or Independent Component Analysis (PCA, ICA)
 - Manifold learning, GANs
- Clustering:
 - K-means
 - Expectation-Maximization
 - Agglomerative methods
 - Splitting methods


Addressing Multiple Learning Tasks Together

 Multi-task learning: How to learn representations that are common to different but related prediction tasks

Prediction over Time

- State-space methods
 - Time series analysis
 - Stochastic state estimation
 - System identification
- Recurrent neural networks
- Reinforcement learning: Actions over time Learning policies underlying observed sequences

