DQN and Atari Games
Ron Parr
CompSci 570

How It Started: Learning to play Backgammon

- Neurogammon developed in 1989 using supervised learning
 - Trained NN on expert human moves
 - Played at level of intermediate human player

- TD-gammon developed in 1992 using RL
 - Neural network value function approximation
 - TD sufficient (known model)
 - Using raw board positions, learned to play as well as neurogammon
 - Tesauro added carefully selected features to the network
 - Then had it play 1 million games played against self
 - Comparable performance to best human players
About Atari Games

- Atari 2600 was an early generation video game that accepted ROM cartridges enabling a variety of games on the same hardware – arguably the first widely successful system of this type
- Had very limited storage, graphics, sound, computation
 - 160x192 resolution
 - 128 bytes of RAM
 - 4K ROM cartridges
 - 1.2 Mhz processor
- Simple controller with 1 button, 8-directional joystick
- In short, it was the equivalent of an Xbox, Playstation or Switch in RP’s youth

Why Atari as an RL Benchmark?

- Easy to simulate
- Widely available
- Small(ish) discrete action space
- Large number of games possible in a common platform
- Diversity in types of games, including many that required somewhat long term behavior
- No difficult object recognition problems involved (graphics too crude)
- Not obviously easy
Some challenges

• Single frame is not a Markovian state (partial solution: stack frames)

• Games designed for human time scale responses, for changing actions every 1/60 second (solution: make actions sticky)

• Flicker – some objects appeared only in odd or even frames [see, e.g., the ghosts in Pac-Man] (partial solution: input is max over two adjacent frames)

Switch to David Silver’s Slides
(We’ll jump in at slide 11, and return after slide 21)
Lessons learned

- From TD-Gammon to DQN surprisingly little as changed
 - Still no stability or performance guarantees despite changes
 - Training still requires massive amounts of data
 - Convnets, small changes in training make a big difference (as in deep nets)

- Yet everything has changed
 - After years of frustration in applying RL to hard problems, now people want to apply RL to everything
 - Harder games
 - Power management in data centers
 - Robotic control

After DQN/Atari

- Some concern that community is focused too much on game playing

- Learning (only) value/Q-functions from images is limiting
- Combine with recurrent network techniques (e.g. LSTM) to handle state that isn't directly observable
- Combine with search for for turn-based games with known models
Unsatisfying aspects of DQN/Atari success

• No high level knowledge (all new games learned from scratch)

• Training time is quite large (50M frames)

• Solutions lack robustness (adding irrelevant “distractor” graphics can cause strange behavior)

• Some evidence that solutions may be partly memorized (poor generalization)