Markov Decision Processes (MDPs)

Ron Parr
CompSci 570
Department of Computer Science
Duke University

With thanks to Kris Hauser for some slides

The Winding Path to RL

- Decision Theory
- Markov Decision Processes
- Reinforcement Learning
- Descriptive theory of optimal behavior
- Mathematical/Algorithmic realization of Decision Theory
- Application of learning techniques to challenges of MDPs with numerous or unknown parameters
Covered Today

• MDPs

• Algorithms for MDPs
 – Value Determination
 – Optimal Policy Selection
 • Value Iteration
 • Policy Iteration

Swept under the rug today

• Utility of money (assumed 1:1)

• How to determine costs/utilities

• How to determine probabilities
Playing a Game Show

- Assume series of questions
 - Increasing difficulty
 - Increasing payoff
- Choice:
 - Accept accumulated earnings and quit
 - Continue and risk losing everything
- “Who wants to be a millionaire?”

State Representation

Dollar amounts indicate the payoff for getting the question right.

Downward green arrows indicate the choice to exit the game.

Probabilistic Transitions on Attempt to Answer

N.B.: These exit transitions should actually correspond to states.

Green indicates profit at exit from game.
Making Optimal Decisions

• Work backwards from future to present

• Consider $50,000 question
 – Suppose P(correct) = 1/10
 – V(stop)=11,100
 – V(continue) = 0.9*0 + 0.1*61.1K = $6.11K

• Optimal decision stops

Working Backwards

V=3,749 V=4,166 V=5,555 V=11.1K

Red X indicates bad choice
Dealing with Loops

Suppose you can pay $1000 (from any losing state) to play again.

![Diagram showing a loop with probabilities and states: $9/10$ to state 0, $3/4$ to state 1, $1/2$ to state 2, and $1/10$ to state 3, with -1000 cost at each transition.

$V(s_0) = 0.10(-1000 + V(s_0)) + 0.90V(s_1)$
$V(s_1) = 0.25(-1000 + V(s_0)) + 0.75V(s_2)$
$V(s_2) = 0.50(-1000 + V(s_0)) + 0.50V(s_3)$
$V(s_3) = 0.90(-1000 + V(s_0)) + 0.10(61100)$
And the solution is...

\[V = \$3,749 \]
\[\downarrow \]
\[V = \$32.47K \]
\[\downarrow \]
Applications of MDPs

• AI/Computer Science
 - Robotic control (Koenig & Simmons, Thrun et al., Kaelbling et al.)
 - Air Campaign Planning (Meuleau et al.)
 - Elevator Control (Barto & Crites)
 - Computation Scheduling (Zilberstein et al.)
 - Control and Automation (Moore et al.)
 - Spoken dialogue management (Singh et al.)
 - Cellular channel allocation (Singh & Bertsekas)

Applications of MDPs

• Economics/Operations Research
 - Fleet maintenance (Howard, Rust)
 - Road maintenance (Golabi et al.)
 - Packet Retransmission (Feinberg et al.)
 - Nuclear plant management (Rothwell & Rust)
 - Debt collection strategies (Abe et al.)
 - Data center management (DeepMind)
Applications of MDPs

- EE/Control
 - Missile defense (Bertsekas et al.)
 - Inventory management (Van Roy et al.)
- Agriculture
 - Herd management (Kristensen, Toft)
- Other
 - Sports strategies
 - Board games
 - Video games

The Markov Assumption

- Let S_t be a random variable for the state at time t

- $P(S_t|A_{t-1},S_{t-1},...,A_0S_0) = P(S_t|A_{t-1},S_{t-1})$

- Similar to HMMs but
 - Future is independent of past given current state, action
 - Also assume reward depends only on current state (or s,a or s,a,s')
Understanding Discounting

- **Mathematical motivation**
 - Keeps values bounded
 - What if I promise you $0.01 every day you visit me?

- **Economic motivation**
 - Discount comes from inflation
 - Promise of $1.00 in future is worth $0.99 today

- **Probability of dying (losing the game)**
 - Suppose \(\epsilon \) probability of dying at each decision interval
 - Transition w/ prob \(\epsilon \) to state with value 0
 - Equivalent to \(1 - \epsilon \) discount factor

Discounting in Practice

- **Often chosen unrealistically low**
 - Faster convergence of the algorithms we’ll see later
 - Leads to slightly myopic policies

- **Can reformulate most algs. for avg. reward**
 - Mathematically uglier
 - Somewhat slower run time
Covered Today

- MDPs

- Algorithms for MDPs
 - Value Determination
 - Optimal Policy Selection
 - Value Iteration
 - Policy Iteration

Value Determination

Determine the value of each state under policy π

$$V^\pi(s) = R(s, \pi(s)) + \gamma \sum_{s'} P(s' | s, \pi(s)) V^\pi(s')$$

Bellman Equation for a fixed policy π

$$V^\pi(s_1) = 1 + \gamma (0.4V^\pi(s_2) + 0.6V^\pi(s_3))$$
Matrix Form

\[P^{\pi} = \begin{pmatrix} P(s_1 | s_1, \pi(s_1)) & P(s_2 | s_1, \pi(s_1)) & P(s_3 | s_1, \pi(s_1)) \\ P(s_1 | s_2, \pi(s_2)) & P(s_2 | s_2, \pi(s_2)) & P(s_3 | s_2, \pi(s_2)) \\ P(s_1 | s_3, \pi(s_3)) & P(s_2 | s_3, \pi(s_3)) & P(s_3 | s_3, \pi(s_3)) \end{pmatrix} \]

\[V^{\pi} = \gamma \mathbf{P}^{\pi} V^{\pi} + \mathbf{R}^{\pi} \]

Generalization of the game show example from earlier

How to solve this system efficiently? Does it even have a solution?

Solving for Values

\[V^{\pi} = \gamma \mathbf{P}^{\pi} V^{\pi} + \mathbf{R}^{\pi} \]

For moderate numbers of states we can solve this system exactly:

\[V^{\pi} = (I - \gamma \mathbf{P}^{\pi})^{-1} \mathbf{R}^{\pi} \]

Guaranteed invertible because \(\gamma \mathbf{P}^{\pi} \) has spectral radius <1
Iteratively Solving for Values

\[V^\pi = \gamma P^\pi V^\pi + R^\pi \]

For larger numbers of states we can solve this system indirectly:

\[V^\pi_{i+1} = \gamma P^\pi V^\pi_i + R^\pi \]

Guaranteed convergent because \(\gamma P^\pi \) has spectral radius < 1

Interpreting the Iterations

• Suppose \(V^\pi_0 = 0 \), and R is defined on (s,a)
• Then \(V^\pi_1 = R^\pi \) (value of executing 1 step of \(\pi \))
• \(V^\pi_2 = R^\pi + \gamma P^\pi V^\pi_1 = R^\pi + \gamma P^\pi R^\pi \) (expected value of executing 2 steps of \(\pi \))
• \(V^\pi_3 = R^\pi + \gamma P^\pi V^\pi_2 = R^\pi + \gamma P^\pi R^\pi + \gamma^2 (P^\pi)^2 R^\pi \) (expected value of executing 3 steps of \(\pi \))
• Can interpret these as the value of a finite horizon problem, where everything stops after i steps
Interpretation Continued

• \(V_{\infty} = (I - \gamma P)^{-1} R = V^\pi \) = infinite horizon values

• Infinite horizon = value of running \(\pi \) forever

• Nota bene: This interpretation applies when \(V^\pi_0 = 0 \), but iteration converges to \(V^\pi \) for any choice of \(V^\pi_0 \)

Establishing Convergence

• Eigenvalue analysis

• Monotonicity
 – Assume all values start pessimistic
 – One value must always increase
 – Can never overestimate
 – Easy to prove

• Contraction analysis...
Contraction Analysis

• Define maximum norm

\[\|V\|_\infty = \max_i |V[i]| \]

• Consider two value functions \(V^a\) and \(V^b\) each at iteration 1:

\[\left\| V_1^a - V_1^b \right\|_\infty = \varepsilon \]

• WLOG say

\[V_1^a \leq V_1^b + \varepsilon \quad (\text{Vector of all } \varepsilon \text{'s}) \]

Contraction Analysis Contd.

• At next iteration for \(V^b\):

\[V_2^b = R + \gamma PV_1^b \]

• For \(V^a\)

\[V_2^a = R + \gamma PV_1^a \]

\[\leq R + \gamma P(V_1^b + \varepsilon) = R + \gamma PV_1^b + \gamma \varepsilon = R + \gamma PV_1^b + \gamma \varepsilon \]

• Conclude:

\[\left\| V_2^a - V_2^b \right\|_\infty \leq \gamma \varepsilon \]
Importance of Contraction

- Any two value functions get closer

- True value function V^* is a fixed point (value doesn't change with iteration)

- Max norm distance from V^* decreases dramatically quickly with iterations

$$
\|V_0 - V^*\|_\infty = \varepsilon \rightarrow \|V_n - V^*\|_\infty \leq \gamma^n \varepsilon
$$

Covered Today

- MDPs

- Algorithms for MDPs
 - Value Determination
 - Optimal Policy Selection
 - Value Iteration
 - Policy Iteration
Finding Good Policies

Suppose an expert told you the “true value” of each state:

\[V(S1) = 10 \quad V(S2) = 5 \]

Improving Policies

- How do we get the optimal policy?
- If we knew the values under the optimal policy, then just take the optimal action in every state
- How do we define these values?
- **Fixed point** equation with choices (Bellman equation):

\[
V^*(s) = \max_a R(s, a) + \gamma \sum_{s'} P(s' | s, a) V^*(s')
\]

Decision theoretic optimal choice given \(V^\)*
If we know \(V^\), picking the optimal action is easy*
If we know the optimal actions, computing \(V^\) is easy*
How do we compute both at the same time?
Value Iteration

We can’t solve the system directly with a max in the equation
Can we solve it by iteration?

\[V_{i+1}(s) = \max_a R(s, a) + \gamma \sum_{s'} P(s' \mid s, a)V_i(s') \]

- Called value iteration or simply successive approximation
- Same as value determination, but we can change actions

- Convergence:
 - Can’t do eigenvalue analysis (not linear)
 - Still monotonic
 - Still a contraction in max norm (exercise)
 - Converges quickly

Robot Navigation Example

- The robot (shown △) lives in a world described by a 4x3 grid of squares with square (2,2) occupied by an obstacle
- A state is defined by the square in which the robot is located: (1,1) in the above figure
 - \(\rightarrow \) 11 states
Action (Transition) Model

In each state, the robot’s possible actions are {U, D, R, L}

For each action:
- With probability 0.8 the robot does the right thing (moves up, down, right, or left by one square)
- With probability 0.1 it moves in a direction perpendicular to the intended one
- If the robot can’t move, it stays in the same square

[This model satisfies the Markov condition]
Terminal States, Rewards, and Costs

- Two terminal states: (4,2) and (4,3)
- Rewards:
 - $R(4,3) = +1$ [The robot finds gold]
 - $R(4,2) = -1$ [The robot gets trapped in quicksand]
 - $R(s) = -0.04$ in all other states
- This example (from the Russell & Norvig text) assumes no discounting ($\gamma=1$)
- Discussion: Is this a good modeling decision?

How to Implement Terminal States

- **Modify your algorithm**
 - For states s that are “terminal”
 - For an iterative solver, just set $V(s)=R(s)$ at each iteration
 - If using matrix inversion, hack your matrix

- **Modify your MDP**
 - Create a state T with $R(T)=0$, $P(T|T,a)=1$ for all a
 - For all states s that are “terminal”
 - Set $P(T|s,a) = 1$ for all a
 - This forces $V(s)=R(s)$
The Optimal Policy is Stationary

- A stationary policy is a complete map π: state \rightarrow action
- For each non-terminal state it recommends an action, independent of when and how the state is reached
- Under the Markov and infinite horizon assumptions, the optimal policy π^* is necessarily a stationary policy
 [The best action in a state does not depend on the past]

Is it obvious which policy is optimal for this problem?

(Stationary) Policy

- A stationary policy is a complete map π: state \rightarrow action
- For each non-terminal state it recommends an action, independent of when and how the state is reached
- Under the Markov and infinite horizon assumptions, the optimal policy π^* is necessarily a stationary policy
 [The best action in a state does not depend on the past]
Optimal Policies for Various $R(s)$

- $R(s) = -0.04$
- $R(s) = -2$
- $R(s) = -0.01$
- $R(s) > 0$

Bellman Equation

If s is terminal:
$$V(s) = R(s)$$

If s is non-terminal:
$$V(s) = R(s) + \max_{a \in \text{App}(s)} \sum_{s' \in \text{Succ}(s,a)} P(s'|s,a)V(s')$$

$\pi^*(s) = \arg \max_{a \in \text{App}(s)} \sum_{s' \in \text{Succ}(s,a)} P(s'|s,a)V(s')$

The utility of s depends on the utility of other states s' (possibly, including s), and vice versa.

App(s) used if not all actions are defined in all states.
Value Iteration Applied

1. Initialize the utility of each non-terminal states to $V_0(s) = 0$
2. For $t = 0, 1, 2, \ldots$ do

 $$V_{t+1}(s) = R(s) + \max_{a \in \text{Appl}(s)} \sum_{s' \in \text{Suc}(s,a)} P(s'|s, a)V_t(s')$$

 for each non-terminal state s

State Utilities/Values

- The utility of a state s is the maximal expected amount of reward that the robot will collect from s and future states by executing some action in each encountered state, until it reaches a terminal state (infinite horizon)
- Under the Markov and infinite horizon assumptions, the utility of s is independent of when and how s is reached [It only depends on the possible sequences of states after s, not on the possible sequences before s]
Properties of Value Iteration

- VI converges to V^* ($||V^* - V||_\infty$ from V^* shrinks by γ factor each iteration)
- Converges to optimal policy
- Why? (Because we figure out V^*, optimal policy is argmax)
- Optimal policy is stationary (i.e. Markovian – depends only on current state)
- Why? (Because we are summing utilities. Thought experiment: Suppose you think it’s better to change actions the second time you visit a state. Why didn’t you just take the best action the first time?)
Covered Today

- Decision Theory
- MDPs
- Algorithms for MDPs
 - Value Determination
 - Optimal Policy Selection
 - Value Iteration
 - Policy Iteration

Let’s name the action that looks best WRT \(V \):

\[
\pi_v(s) = \arg \max_a R(s,a) + \gamma \sum_{s'} P(s' | s,a)V(s')
\]

\[\pi_v = \text{greedy}(V)\]
Bootstrapping: Policy Iteration

Idea: Greedy selection is useful even with suboptimal V

Guess $\pi_v = \pi_0$

$V_\pi = \text{value of acting on } \pi$
 (solve linear system)

$\pi_v \leftarrow \text{greedy}(V_\pi)$

Repeat until policy doesn’t change

Guaranteed to find optimal policy
Usually takes very small number of iterations
Computing the value functions is the expensive part

Comparing VI and PI

- **VI**
 - Value changes at every step
 - Policy may change before exact value of policy is computed
 - Many relatively cheap iterations

- **PI**
 - Alternates policy/value updates
 - Solves for value of each policy exactly
 - Fewer, slower iterations (need to invert matrix)

- **Convergence**
 - Both are contractions in max norm
 - PI is shockingly fast (small number of iterations) in practice
Computational Complexity

- VI and PI are both contraction mappings w/rate γ
 (we didn’t prove this for PI in class)

- VI costs less per iteration

- For n states, a actions PI tends to take $O(n)$ iterations in practice
 - Recent results indicate $\sim O(n^2a/1-\gamma)$ worst case
 - Interesting aside: Biggest insight into PI came ~50 years after the algorithm was introduced

A Unified View of Value Iteration and Policy Iteration
Notation

- Update for a fixed policy – definition of T^π operator:

$$T^\pi V \equiv R^\pi + \gamma P^\pi V$$

- Update with policy improvement – def. of the T operator:

$$TV(s) \equiv \max_a r(s,a) + \gamma \sum_{s'} P(s'|s,a)V(s')$$

Value Determination

- For 0 steps $V_0 = R^\pi$

- For i steps $V_i = T^\pi V_{i-1} = T^\pi T^\pi V_{i-2} = \cdots = (T^\pi)^i R^\pi$

- Infinite horizon $\lim_{i \to \infty} V_i = (T^\pi)^\infty R^\pi = (1 - \gamma P^\pi)^{-1} R^\pi = V^\pi$
Value Iteration (includes MAX)

- For 0 steps \(V_0 = R \) (if \(R \) depends on \(a \), pick \(a \) with the highest immediate reward)
- For \(i \) steps \(V_i = TV_{i-1} = T^i R \)
- Infinite horizon \(\lim_{i \to \infty} V_i = T^\infty R = TV^* = V^* \)

Modified Policy Iteration

- Guess \(V_0 \) (usually just \(R \)), and \(\pi \)
- \(i = 1 \)
- Repeat until convergence*
 - For \(j = 1 \) to \(n \)
 - \(V_i = TV_{i-1} \)
 - \(i = i+1 \)
 - \(\pi = \text{greedy}(V_{i-1}) \)
- Special cases: \(n=1 \) (VI), \(n \to \infty \) (PI)
MDP Limitations → Reinforcement Learning

- MDP operate at the level of states
 - States = atomic events
 - We usually have exponentially (or infinitely) many of these
- We assume P and R are known

- Machine learning to the rescue!
 - Infer P and R (implicitly or explicitly from data)
 - Generalize from small number of states/policies