Regression

CPS 570
Ron Parr
Department of Computer Science
Duke University

Regression figures provided by Christopher Bishop and © 2007 Christopher Bishop
Some content adapted from Lise Getoor, Tom Dietterich, Andrew Moore & Rich Maclin

Supervised Learning

• Given: Training Set
• Goal: Good performance on test set

• Assumptions:
 – Training samples are independently drawn, and identically distributed (IID)
 – Test set is from same distribution as training set
Fitting Continuous Data (Regression)

- Datum i has feature vector: \(\phi = (\phi_1(x^{(i)}) \ldots \phi_k(x^{(i)})) \)
- Feature = basis vector/function (row vector)
- Has real valued target: \(t^{(i)} \)
- Concept space: linear combinations of features:
 \[y(x^{(i)},w) = \sum_{j=1}^{k} \phi_j(x^{(i)})w_j = \phi(x^{(i)})w = \phi^{(i)}w \]
- Learning objective: Search to find “best” \(w \)
- (This is standard “data fitting” that most people learn in some form or another.)

Linearity of Regression

- Regression typically considered a *linear* method, but...
- Features not necessarily linear
 - Features not necessarily linear
 - Features not necessarily linear
 - Features not necessarily linear
- and, BTW, features not necessarily linear
Regression Examples

- Predicting housing price from:
 - House size, lot size, rooms, neighborhood*, etc.
- Predicting weight from:
 - Sex, height, ethnicity, etc.
- Predicting life expectancy from:
 - Medication, disease state, etc.
- Predicting crop yield from:
 - Precipitation, fertilizer, temperature, etc.
- Fitting polynomials
 - Features are monomials

Features/Basis Functions

- Polynomials
- Indicators
- Gaussian densities
- Step functions or sigmoids
- Sinusoids (Fourier basis)
- Wavelets
- Anything you can imagine...
What is the “best” fit to data?

• No obvious answer to this question
• Three compatible answers:
 – Minimize squared error on training set
 – Maximize likelihood of the data
 (under certain assumptions)
 – Project data into “closest” approximation
• Other answers possible

Degree 0 Polynomial Fit

© 2007 Christopher Bishop
Degree 9 Polynomial Fit

Minimizing Squared Training Set Error

• Why is this good?

• How could this be bad?

• Minimize:

$$E(w) = \sum_{i=1}^{N} \left(\phi(x^{(i)})w - t^{(i)} \right)^2$$
Maximizing Likelihood of Data

• Assume:
 – True model is in H
 – Data have Gaussian noise
• Actually might want:

$$\arg\max_H P(H \mid X) = \frac{P(X \mid H)P(H)}{P(X)}$$

• Is maximizing $P(X \mid H)$ a good surrogate? (maximizing over w)

Maximizing $P(X \mid H)$

• Assume: $t^{(i)} = y^{(i)} + \varepsilon^{(i)}$

• Where: $P(\varepsilon^{(i)}) = \frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(\varepsilon^{(i)})^2}{2\sigma^2}\right)$

(Gaussian distribution w/mean 0, standard deviation σ)

• Therefore:

$$P(t^{(i)} \mid x^{(i)}, w) = \frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(t^{(i)} - \varphi(x^{(i)}w)^2}{2\sigma^2}\right)$$
Maximization Continued

- Maximizing over entire data set:
 \[
 \prod_{i=1}^{n} P(t^{(i)} | \phi^{(i)}, \theta) = \prod_{i=1}^{n} \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{(t^{(i)} - \phi^{(i)}w)^2}{2\sigma^2}\right)
 \]

- Maximizing equivalent log formulation: (ignoring constants)
 \[
 \sum_{i=1}^{n} -(t^{(i)} - \phi^{(i)}w)^2
 \]

- Or minimizing:
 \[
 E = \sum_{i=1}^{n} (t^{(i)} - \phi^{(i)}w)^2 \quad \text{Look familiar?}
 \]

Checkpoint

- So far we have considered:
 - Minimizing squared error on training set
 - Maximizing Likelihood of training set
 (given model, and some assumptions)

- Different approaches w/same objective!
Solving the Optimization Problem

• Nota bene: Good to keep optimization problem and optimization technique separate in your mind

• Some optimization approaches:
 – Gradient descent
 – Direct Minimization

Minimizing \mathbf{E} by Gradient Descent

Start with initial weight vector \mathbf{w}_0

Compute the gradient $\nabla_{\mathbf{w}} \mathbf{E} = \left(\frac{\partial \mathbf{E}(\mathbf{w})}{\partial w_0}, \frac{\partial \mathbf{E}(\mathbf{w})}{\partial w_1}, \cdots, \frac{\partial \mathbf{E}(\mathbf{w})}{\partial w_n} \right)$

Compute $\mathbf{w} \leftarrow \mathbf{w} - \alpha \nabla \mathbf{E}$ where α is the step size

Repeat until convergence

(Adapted from Lise Getoor’s Slides)
Gradient Descent Issues

- For this particular problem:
 - No local optima
 - Convergence “guaranteed” if done in “batch”

- In general:
 - Local optimum only (local=global for lin. regression)
 - Batch mode more stable
 - Incremental possible
 - Can oscillate
 - Use decreasing step size (Robbins-Monro) to stabilize

Solving the Minimization Directly

\[E = \sum_{i=1}^{n} (t^{(i)} - \phi^{(i)}w)^2 \]

\[\nabla_w E \propto \sum_{i=1}^{n} (t^{(i)} - \phi^{(i)}w)\phi^{(i)} \]

Set gradient to 0 to find min:

\[\sum_{i=1}^{n} (t^{(i)} - \phi^{(i)}w)\phi^{(i)} = 0 \]

\[\sum_{i=1}^{n} t^{(i)}\phi^{(i)} - w^T \sum_{i=1}^{n} (\phi^{(i)})^T \phi^{(i)} = 0 \]

\[t^T \Phi - w^T \Phi^T \Phi = 0 \rightarrow \Phi \Phi^T t - \Phi^T \Phi w = 0 \]

\[w = (\Phi\Phi^T)^{-1} \Phi^T t \]

\[\Phi = \begin{bmatrix} \Phi(x^{(1)}) \\ \Phi(x^{(2)}) \\ \vdots \\ \Phi(x^{(n)}) \end{bmatrix} \]

\[(\Phi\Phi^T)^{-1} \Phi^T \]
Geometric Interpretation
(included in slides for reference but omitted from lecture for brevity)

- $t=(t^{(1)}...t^{(n)}) = \text{point in n-space}$
- Ranging over w, $\Phi w = H =$
 - column space of features
 - subspace of \mathbb{R}^n occupied by H
- Goal: Find “closest” point in H to t

- Suppose closeness = Euclidean distance

Another Geometric Interpretation

H space (linear combinations of Φ)

(Euclidean distance minimized by orthogonal projection)
Minimizing Euclidean Distance

- Minimize: $|t - \Phi w|_2$
- For n data points:

$$\sqrt{\sum_{j=1}^{n} (t^{(j)} - \phi^{(j)}w)^2}$$

- Equivalent to minimizing:

$$\sum_{j=1}^{n} (t^{(j)} - \phi^{(j)}w)^2$$

Look familiar?

Checkpoint

- Three different ways to pick w in H
 - Minimize squared error on training set
 - Maximize likelihood of training set
 - Distance minimizing projection into H

- All lead to same optimization problem!

$$\arg\min_w E(w) = \sum_{i=1}^{N} (\phi^{(i)}w - t^{(i)})^2$$
Geometric Solution

- Geometric Approach (Strang)
- Let Φ be the feature (design) matrix
- Require orthogonality:

$$\forall z : (\Phi z)^T (\Phi w - t) = 0$$

Any vector in H Line from t to solution

$$\forall z : z^T [\Phi^T \Phi w - \Phi^T t] = 0$$

Direct Geometric Solution Continued

- When is this true: $\forall z : z^T [\Phi^T \Phi w - \Phi^T t] = 0$
- When:

$$\Phi^T \Phi w - \Phi^T t = 0$$

$$w = (\Phi^T \Phi)^{-1} \Phi^T t$$

Same solution as direct minimization of error

When does the inverse exist?
Hidden Assumption Behind All Methods Discussed

• Many of our solution methods require that our features (columns of Φ) that are linearly independent
• What if they aren’t?
 – Solution isn’t unique
 – Can use pseudoinverse (pinv in matlab)
 – Finds solution with minimum 2-norm

What if $t^{(i)}$ is a vector?

• Nothing changes!
• Scalar prediction:

$$w = (\Phi^T\Phi)^{-1}\Phi^T t$$

• Vector prediction (exercise):

$$W = (\Phi^T\Phi)^{-1}\Phi^T T$$

Weight matrix Target matrix
Checkpoint

• What we have shown:
 – Three different ways of viewing regression as an optimization problem
 – All three lead to the same solution
• What we have not shown
 – How to pick features
 – Whether these views are the “right” objective function

What about other criteria?

• Minimizing worse case (L_∞) loss?
 \[\min_w \max_i \left(\phi^{(i)}w - t^{(i)} \right) \]
• Solve by linear program...
Minimizing Max Error By Linear Program

- Constraints: \(\forall i: \)
 \[\varepsilon > \phi(i)w - t(i) \]
 \[\varepsilon > t(i) - \phi(i)w \]

- Objective: Minimize \(\varepsilon \)

- Don’t use for noisy data!

What is the Best Choice of Features?

[Graph showing noisy source data]
Degree 0 Fit

Degree 1 Fit
Degree 3 Fit

Degree 9 Fit
Observations

- Degree 3 is the best match to the source
- Degree 9 is the best match to the samples
- Performance on test data:

![Graph showing training and test data comparison.]

Understanding Loss

- Suppose we have a squared error loss function: L (gets too confusing to use E)
- Define $h(x) = E[t|x]$ (true hypothesis w/noise averaged out)
- $y(x)$ = our learned hypothesis

$$E[L] = \int \{y(x) - h(x)\}^2 p(x)dx + \int \{h(x) - t\}^2 p(x,t)dxdt$$

Mismatch between hypothesis and target – we can influence this

Noise in distribution of targets (nothing we can do)
Bias and Variance

\[E[L] = \int (y(x) - h(x))^2 \rho(x) dx + \int (h(x) - t)^2 \rho(x,t) dx dt \]

Since \(y(x) \) is fit to data, consider expectation over different draws of a fixed size data set for the part we control

\[
\begin{align*}
E_D \left[(y(x;D) - h(x))^2 \right] & = \left(E_D [y(x;D) - h(x)] \right)^2 + E_D \left[(y(x;D) - E_D [y(x;D)])^2 \right] \\
& \text{bias} \quad \text{variance}
\end{align*}
\]

Understanding Bias

\[\left(E_D [y(x;D) - h(x)] \right)^2 \]

- Measures how well our approximation architecture can fit the data
- Weak approximators (e.g. low degree polynomials) will have high bias
- Strong approximators (e.g. high degree polynomials, will have lower bias)
Understanding Variance

\[E_D \left[\{ y(x; D) - E_D[y(x; D)] \}^2 \right] \]

- No *direct* dependence on true target values
- For a fixed size D:
 - Strong approximators will tend to have more variance
 - Weak approximators will tend to have less variance
- Variance will typically disappear as size of D goes to infinity

Example: 20 points
\[
y = x + 2 \sin(1.5x) + N(0,0.2)
\]

Hypothesis space = linear in x
50 fits (20 examples each)

What are we seeing here?

Bias
Variance

Degree 9 Fit Revisited

$M = 9$

© 2007 Christopher Bishop
Trade off Between Bias and Variance

- Is the problem a bad choice of polynomial?
- Is the problem that we don’t have enough data?
- Answer: Yes
- Lower bias -> Higher Variance
- Higher bias -> Lower Variance

Bias and Variance: Lessons Learned

- When data are scarce relative to the “capacity” of our hypothesis space
 - Variance can be a problem
 - Restricting hypothesis space can reduce variance at cost of increased bias
- When data are plentiful
 - Variance is less of a concern
 - May afford to use richer hypothesis space
Concluding Comments

• Regression is the most basic machine learning algorithm
• Multiple views are all equivalent:
 – Minimize squared loss
 – Maximize likelihood
 – Orthogonal projection
• Big question for linear methods: Choosing features
• First steps towards understanding this:
 Bias and variance trade off