
9/7/22

1

Introduction to
Approximation Algorithms

Ron Parr
CPS 570

Covered Today

• Approximation in general

• Set cover

• A greedy algorithm for set cover

• Submodularity

• Generic, greedy algorithm exploiting submodularity

9/7/22

2

Some Intractable Combinatorial
Optimization Problems

• Find the lowest cost traveling salesman tour

• Color a graph with the fewest possible colors

• Cover with the lowest number of vertices/sets

Set Cover
• Input:
– A set of atoms: A=a1…an

– A set of sets: S=s1…sm
– Each set contains 1 or more atoms

• Optimization question: Can you choose k elements
from S such that every element of A is in at least one of
these k? (This is a called a cover.)

• Decision question: Exist a cover of size k or less?
• NP-hard

9/7/22

3

Set Cover Example

14 atoms
5 sets

Hardness of Set Cover

• Karp showed that set cover is NP-complete
(classic paper on reading list)

• Satisfiability reduces to clique
• Clique reduces to node (vertex) cover
• Node cover reduces to set cover

9/7/22

4

Node (vertex) Cover

• Input:
– Graph G=E,V

• Optimization question: What is the smallest
set of vertices such that every edge is incident
upon one of the vertices

• Decision question: Does there exist a set of
vertices of size k such that every edge is
incident on at least one vertex in k

Reduce Node Cover to Set Cover

• Remember: Must solve node cover w/set cover
• For each edge in the node cover problem, we

create an atom in the set cover problem
• For each node in the node cover problem, we

create a set s.t. elements of the set correspond to
edges incident to the node

• Observe that a set cover of size k exists iff a node
cover of size k exists

9/7/22

5

Reduction Example

a1 a2

a3

c1
c2

c3
• Edges in node cover -> atoms (a1…a3) in set cover
• Each node in node cover -> set with all adjacent edges in set cover (c1..c3)

Real Problems Abstracted by Set Cover

• Sensor placement:
– You have sensors to place in m different locations
– Each location can observe some fraction of your n targets
– Find the most efficient sensor allocation to see all targets

• Buying bundles of goods
– Different vendors offer package deals on different combinations of products

(flat rate shipping)
– Buy all the products you need in the smallest number of transactions

• Choosing advertising outlets
– Different stations/newspapers/sites cover different, possibly overlapping markets
– Try to cover markets with smallest number of ads

• Choosing test cases for code/hardware/exams
– Different tests exercise different (overlapping) parts of the system
– Try to verify system in smallest number of tests

9/7/22

6

Why use approximation?
• Many problems we want to solve are NP-hard optimization

problems w/associated NP-complete decision problems

• Different notions of approximation
– Search for a “pretty good” answer
– Return an optimal answer in some cases (fail in others?)
– Return an answer that is an additive factor from optimal:

result = optimal +/- e
– Return an answer that a multiplicative factor from optimal:

result/approximation = e
– For a given resource level, achieve a lower performance value?
– For a given performance level, consume more resources?

So, what do we do in, e.g., set cover?

• Settle for a larger k (more sets)?
– What if we don’t need the absolute smallest k?
– Is there an algorithm that gives something close to

the smallest but still covers everything?

• Settle for less than full coverage
– What if we have only k resources?
– Is there an algorithm that gives us something

close to the best coverage using only k?

9/7/22

7

Greedy Algorithms

• Greedy algorithms are a general class of
algorithms that, loosely speaking, make a choice
that gives maximal short term improvement,
without considering subsequent choices

• Examples of greedy behavior:
– Picking the class that is most interesting to you first

(ignoring that this might cause scheduling problems
with other classes)

– Positioning a sensor so that it sees the highest
number of targets (while ignoring subsequent choices)

Greedy Set Cover

• Repeat until done*
– For each set not added, check how many

previously uncovered atoms it would add
– Add the set with the biggest increase in the

number of atoms covered

• *What is “done”
– Max of k elements added, or
– All elements covered

9/7/22

8

What does greedy do here?

What price greed?

• Assume we have a budget of k

• Optimal picks: O1…Ok, covering n atoms

• Greedy picks G1…Gk, covering x atoms

• What is the relationship between x and n?

9/7/22

9

What price greed (2)?

• oi = number of new elements covered by Oi

• gi = number of new elements covered by Gi

• “new” means not previously covered by 1…i-1

• n = o1+o2+…+ok

• x = g1+g2+…+gk

What price greed (3)?
• Suppose oi>gi, i>1
• Q: Why didn’t greedy pick oi?
• A: The only reason would be if greedy already covered oi-gi

of the elements in oi in some gj, j<i
• x ≥ (o1-g1)+(o2-g2)+…+(ok-gk)=n-x
• 2x≥n
• x≥n/2

• Conclusion: For fixed k, greedy gets a least half as much
coverage as optimal

o2

o1

g1g2

9/7/22

10

What about minimizing k to achieve
full coverage?

• Suppose optimal coverage uses k sets to cover n atoms
• We run greedy until it covers everything, taking h ≥ k sets

• Analyze greedy’s h choices in batches of k
– Greedy covers at least n/2 in first batch of k
– Second batch of k covers at least half of remaining atoms. Why?

Same analysis can be repeated.

• Conclusion: greedy requires at O(klog2n) sets

• Note: Our bounds are not tight in this case. Better proof
exploiting submodularity is possible.

Applying to Other Problems
• If we have a good approximation scheme for one NP-hard

problem, does this imply a good approximation scheme for
others? (e.g. transform to set cover, then approximate the
transformed problem)

• Depends upon what what you mean by “good”…

• The polynomial factor can be a killer here

• Conclusion: Approximation algorithms will tend to be
problem specific unless one discovers a more general
approach to approximation

9/7/22

11

Submodularity

• f is a function defined on sets
• Monotone if:

• Submodular if

)(}){()(}){(:,,, YfzYfXfzXfYzYXYX -È³-ÈÏÍWÍ

X ⊆Y : f (Y)≥ f (X)

In English

• Monotonicity: Bigger is better
(though not strictly)

• Submodularity:
– Adding to a subset has at least as much “bang” as

adding to a superset, or
– Diminishing returns for adding to bigger sets

9/7/22

12

Set Cover?

• Does set cover fit this framework?
• f = number of atoms covered

• Is it monotone?
• Is it submodular?

Maximizing Monotone Submodular
Set Functions

• Goal: Given budget of k sets, maximize f
• This is NP-hard in general L

• Greedy algorithm for maximizing f that is a
– Non-negative
– Monotone
– Submodular

set function is a 1-1/e (~0.63) factor from optimal for budget k
• Similar argument to set cover to gives a resource bound
• Proof in reading, similar to our 2X bound, but a little more subtle

• Provides a generic procedure for analyzing greedy algorithms for certain
classes of hard problems J

9/7/22

13

Greedy Submodular Maximization

• Input: set of sets W, score function f
• X = {}
• Repeat until “done”
– Find set w in W that maximizes f(X+w)
– Add w to X

• “done”:
– |X| = k, or
– f(X) = some target value

Greedy Set Cover and Submodularity

• Our greedy algorithm for set cover can be
understood as an instance of the greedy
approach for submodular set functions

• Conclusion: We get a tighter bound for free!
• (1-1/e > ½)

9/7/22

14

Exploiting Submodularity

• Frequently used to justify greedy approaches
that otherwise would have had
computation/implementation ease as their
only justification

• Impactful in, e.g., sensor network community

Conclusions
• Avoid worst consequences NP-hardness with clever approximation

algorithms (or clever analysis of simple algorithms)

• Caveats:
– Not all problems admit good approximate solutions
– Specific approximation techniques for one problem don’t necessarily apply

to others

• Some generic approaches exist:
– Greedy algorithms sometimes do well
– Submodularity provides a generic framework for analyzing certain types of

greedy algorithms
– Other families of approaches exist as well – rounding, LP relaxations, etc.

