
9/5/22

1

NP Hardness/Completeness
Overview

Ron Parr
CompSci 570

Duke University
Department of Computer Science

Why Study NP-hardness

• NP hardness is not an AI topic, but…

• It’s important for all computer scientists

• It has a particularly profound impact on AI because so many AI
problems are NP-hard, e.g.,
– Finding global minimum in neural network training
– Planning and scheduling
– Computing probabilities in Bayesian networks
– Constraint satisfaction
– Finding an equilibrium in a game that guarantees a minimum utility
– Etc.

9/5/22

2

P and NP
• P and NP are about decision problems
• P is set of problems that can be solved in polynomial time
• NP is a (proper?) superset of P
• NP is the set of problems that:

– Have solutions which can be verified in polynomial time or,
equivalently,

– can be solved by a non-deterministic Turing machine in polynomial
time (a non-deterministic Turing machine can be thought of as a guess
and check algorithm that always happens to guess correctly)

• Roughly speaking:
– Problems in P are tractable – can be solved in a reasonable amount of

time, and faster computers help
– Some problems in NP might not be tractable – unknown if a poly time

solution exists

NP P

Scaling – Why P matters

9/5/22

3

Isn’t P big?

• P includes O(n), O(n2), O(n10), O(n100), etc.
• Clearly O(n10) isn’t something to be excited about

– not practical

• Computer scientists are very clever at making
things that are in P efficient

• First algorithms for some problems are often
quite expensive, e.g., O(n3), but research often
brings this down

Better understanding the class NP

• A class of decision problems (Yes/No)
• Solutions can be verified in polynomial time
• Examples:
– Graph coloring:

– Sortedness: [1 2 3 4 5 8 7]

WA
NT

Q

SA
NSW

VT

9/5/22

4

NP-hardness
• Many problems in AI are NP-hard (or worse)
• What does this mean?
• These are some of the hardest problems in CS
• Identifying a problem as NP hard means:
– You probably shouldn’t waste time trying to find a

polynomial time solution
– If you find a polynomial time solution, either
• You have a bug
• Find a place on your shelf for your Turing award

• NP hardness is a major triumph (and failure) for
computer science theory

Hardness vs. Completeness

• If something is hard for a class (e.g. NP-hard) it is
at least as hard as the hardest problems in class.

• If something is complete for a class (e.g. NP-
complete) it must be hard and in the class.

• If something is NP-hard, it could be even harder
than the hardest problems in NP

9/5/22

5

Hardness vs. Completeness
Examples and Pictures

NP P

P=NP?
• Is P a proper subset of NP?
• Biggest open question in theoretical computer science

Hardness vs. Completeness
Examples and Pictures

NP P

Consider an O(nlog(n)) problem, e.g., “Is this list sorted?”:
• In P
• In NP
• Can’t be NP-complete or NP-hard

9/5/22

6

Hardness vs. Completeness
Examples and Pictures

NP P

Consider a graph coloring problem:
• Known to be NP-hard
• In NP
• Is NP-complete and NP-hard
• In P only if P=NP

WA
NT

Q

SA NSW

VT

What’s harder still?

• PSPACE hardness
• Algorithms in P-space require polynomial space

• Why is this at least as hard as P-time?
• Example problem(s):
– Some planning problems
– Super Mario Bros. (not any actual game level) is PSPACE-hard

• PSPACE is a (proper?) superset of NP
• Still harder: exp-time

9/5/22

7

Hardness vs. Completeness
Examples and Pictures

NP P

Consider Super Mario Brothers:
• PSPACE-Hard
• PSPACE-Hardness implies NP-Hardness
• In P? (only if P=NP)
• In NP? (only if NP=PSPACE)
• NP-Complete (only if NP=PSPACE)

P=NP?

• Biggest open question in CS

• Can NP-complete problems be solved in poly time?
• Probably not, but nobody has proved it yet

• Somewhat recent attempt at proof detailed in NY
Times, one of many false starts:
http://www.nytimes.com/2009/10/08/science/Wp
olynom.html

NP P

9/5/22

8

How challenging is “P=NP?”

• Princeton University CS department
• See: http://www.cs.princeton.edu/general/bricks.php
• Photo from: http://stuckinthebubble.blogspot.com/2009/07/three-interesting-points-on-princeton.html

NP-hardness

• Why it is a failure:
– Huge class of problems w/o efficient solutions
– We have failed, as a community, find efficient

solutions or prove that none exist

• Why it is a triumph:
– Precise language for talking about these problems
– Sophisticated ways to reason about and categorize the

problems we don’t know how to solve efficiently
– Developing an arsenal of approximation algorithms

http://www.cs.princeton.edu/general/bricks.php

9/5/22

9

Generic Examples of NP-Complete Problems

• ≥ 3 coloring
• Clique
• Set cover & vertex cover
• Traveling salesman
• Knapsack
• Subset sum
• Many, many, more…

How this impacts YOU

• Not just a theoretical exercise
• When confronted with a new problem:
– Is this problem in P?

(Confirm by finding a poly time algorithm)
– Can’t find a poly time algorithm?
• Invest more effort?
• Try to prove the problem is NP-hard?

– If NP-hard, try to find effective heuristics that
work in common cases, or try to find an effective
approximation algorithm

9/5/22

10

Navigating the class NP
• An NP hard problem is at least has hard as the hardest

problems in NP
• The hardest problems in NP are NP-complete

(no known poly time solution)
• Demonstrate hardness via reduction
– Use one problem to solve another
– A is reduced to B, if we can use B to solve A:

A instance
Poly-time
xformation

B Solver

poly time A solver if B is poly time

Reductions

• Q: If B is NP-hard and A is of unknown difficulty, what does
this tell us?

• A: A is no harder than NP-hard (could be much easier)
• Q: If A is NP-hard, and B is of unknown difficulty, what does

this tell us?
• A: B is at least as hard as NP-hard (could be much harder)

A instance
Poly-time
xformation

B Solver

poly time A solver if B is poly time

9/5/22

11

SAT-The First NP-Complete Problem

• Given a set of binary variables
• Conjunction of disjunctions of these variables

• Does there exist a satisfying assignment?
(assignment that makes the expression
evaluate to true)

𝑥! ∨ 𝑥" ∨ 𝑥# ∧ 𝑥! ∨ 𝑥!$ ∨ 𝑥% ∧ ⋯

How To Prove SAT is NP-Complete?
• Note: Clearly in NP
• Challenge: Nothing from which to reduce because this was

the first NP-complete problem
• Idea (Cook 1971):

– Input:
• Any non-deterministic Turing machine - TM
• Any input to that Turing machine - X
• A polynomial bound on the run time of the machine

– Output: A polynomial size SAT expression which evaluates to
true IFF TM says YES – i.e., is there a path through tree of
possible computations that evaluates to YES

• Conclusion: Solving SAT in poly time implies solving any
problem in NP in poly time

9/5/22

12

Cook’s Result in a Cartoon

TM, X, poly time
runtime bound

Poly-time
xformation

SAT Instance

Assumptions: TM is a non-deterministic Turing machine with
polynomial run time, i.e., a solver for problems in NP.

Poly time solver for SAT would solve any problem in
NP in Poly time

Why NP-completeness is SO important

NP

P

SAT

Graph
coloring

P-time

Traveling
salesman

P-time

9/5/22

13

Why NP-completeness is SO important

• All NP-complete problems:
– Are in NP
– Got there by poly time transformation
– Can solve any other problem in NP after poly time

transformation

• Solving any one NP-complete problem in poly time
unlocks ALL NP-complete problems!

• Cracking just one means P=NP!

Easiest Hardness Proof:
Proving Hardness Through Generalization

• Show problem A is NP-hard because known NP-hard
problem B is a special case of A

• Example – generalizations of 3-SAT:
– KSAT (k variables/clause) is NP-hard for any k>=3
– SAT (no restrictions) generalizes 3SAT
– Every valid 3SAT instance is a valid (K)SAT instance
– A poly-time (K)SAT solver would ALSO be a poly time 3SAT solver
– Conclusion: (K)SAT is at least as hard as 3SAT: NP-hard

• Trivial example of a reduction (transformation is a no-op)

9/5/22

14

k-clique -> Subgraph Isomorphism

• k-clique: Given G=(V,E), there exist a fully
connected component of size k?

• Subgraph isomorphism: Given graphs G and H,
does there exist a subgraph of G that is
isomorphic to H

• (isomorphic = identical up to node relabelings)

Reduction

Subgraph
Isomorphism
Solver

K-clique instance
• Graph
• K (clique size to be checked) Generate

clique of
size k

G1

G2

(Almost as simple a generalization)

9/5/22

15

Reduction: 3SAT -> Ind. Set

• Independent set: Given G=(V,E), does there exist a set
of vertices of size k such that no two share an edge?

• Reduce 3SAT to independent set:
– 3 nodes for each clause (corresponding to variable settings),

and connect them in a 3-clique
– Connect all nodes with complementary settings of the same

variable
– Pick k = # of clauses

Reduction Visualized

𝑥! ∨ 𝑥" ∨ 𝑥# ∧ 𝑥! ∨ 𝑥!$ ∨ 𝑥% ∧ ⋯

X1

X3 X7

X1

X12 X9

…

Keep adding one
triangle for each clause

9/5/22

16

Optimization vs. Decision

• Optimization: Find the largest clique
• Decision: Does there exist a clique of size k

• NP is a family of decision problems
• In many cases, we can

reduce decision to optimization
• (Use find-largest-clique to solve k-clique)

Weak vs. Strong Hardness
• Some problems can be brute-forced if the range of numbers

involved is not large

• Subset sum: ∃ subset of a group of natural numbers that sums to k?
– Suppose n numbers, largest of which is m
– Initialize table of size k
– Use dynamic programming

• Iteration 1: Does there exist a set of size 1 that achieves each 1…k
• Iteration j: Use iteration j-1 table to answer – Does there exist a set of size j

that achieves each 1…k
• Quit when j=n, or if you find a solution first

– O(kn2) – polynomial in input size if magnitude of k is polynomial in
input size (note: numbers are stored in binary!)

• Such problems are weakly NP-hard

9/5/22

17

How To Avoid Embarrassing Yourself
• Don’t say: “I proved that it requires exponential time.” if you really meant:

– “I proved it’s NP-Hard/Complete”
– “The best solution I could come up with takes exponential time.”

• Don’t say: “The problem is NP” (which doesn’t even make sense) if you
really meant:
– “Problem is in NP” (often a weak statement)
– “The problem NP-Hard/Complete” (usually a strong statement)

• Don’t reduce new problems to NP-hard complete problems if you meant
to prove the new problem is hard

• Such a reduction is backwards. What you really proved is that you can use
a hard problem to solve an easy one. Always think carefully about the
direction of your reductions

NP-Completeness Summary

• NP-completeness tells us that a problem belongs to
class of similar, hard problems.

• What if you find that a problem is NP hard?
– Look for good approximations with provable guarantees
– Find different measures of complexity
– Look for tractable subclasses
– Use heuristics – try to do well on “most” cases

NP P

