→ Efficiency: latency, throughput, communication complexity.
 \[t + 1 \text{sec.} \]
 space/storage.
 Energy \[\text{(Paxos semi-honest)} \]
 crash/ omission
 → Adversaries: \(n \) parties, \(t \) are corrupt \(\subseteq \) Byzantine/Malicious.
 honest/Byzantine, \(t < \frac{n}{2} \)
 \[t < \frac{n}{3} \]
 → Accountability: detecting fault.
 → Rational only some of them Byzantine.
 → MEV (Miner extractable value).
 → Fairness.
 → Privacy:

Bitcoin / Nakamoto Consensus (2008 - Satoshi Nakamoto)

Byzantine Generals Problem (1980)
Lamport Shostak Pease.
- All of you share $J \rightarrow S$.
- If $t+1$ parties say $\# J \rightarrow S$.
 \[\text{majority } t < n/2, \]

\underline{Cryptographic Hash Functions}

\[H \]

\begin{align*}
\text{If } x \text{ was queried, return } H(x) = y. \\
\text{Toss random coins (256 coins)} \\
\text{output } y. \\
\text{Remember } H(x) = y.
\end{align*}

\[x \overset{\text{(any length)}}{\longrightarrow} y = H(x). \]

\[
\text{(fixed length)} \quad 256 \text{ bits.}
\]
Collision Resistance: It is infeasible to come up with \(x \& x' \), \(x \neq x' \), \(H(x) = H(x') \).

SHA-512, SHA-256...

MDS

Block \(B_c \)

\(H(B_{c-1}) \)

\(J \rightarrow S \)

\(H \rightarrow B \)

\(B_{c+1} \)

\(H(B_c) \)

\(B_{c+2} \)

\(H(B_{c+1}) \)

Immutability: \(H(B_c) \)