Functions and Data Fitting
Outline

1. Functions
2. Features
3. Polynomial Fitting: Univariate
 Least Squares Fitting
 Choosing a Degree
4. Polynomial Fitting: Multivariate
5. Limitations of Polynomials
6. The Curse of Dimensionality
Functions Everywhere

• SPAM
 \[A = \{ \text{all possible emails} \} \]
 \[Y = \{ \text{true, false} \} \]
 \[f : A \rightarrow Y \quad \text{and} \quad y = f(a) \in Y \quad \text{for} \quad a \in A \]

• Virtual Tennis
 \[A = \{ \text{all possible video frames} \} \subseteq \mathbb{R}^d \]
 \[Y = \{ \text{body configurations} \} \subseteq \mathbb{R}^e \]

• Medical diagnosis, speech recognition, movie recommendation

• Predictor = Regressor or Classifier
Classic and ML

- **Classic:**
 - Design *features* by hand
 - Design f by hand

- **ML:**

 Define A, Y
 Collect $T_a = \{(a_1, y_1), \ldots, (a_N, y_N)\} \subset A \times Y$
 Choose \mathcal{F}
 Design $\lambda : \{\text{all possible } T_a\} \rightarrow \mathcal{F}$
 Train: $f = \lambda(T_a)$
 Hopefully, $y \approx f(a)$ *now and forever*

- **Technical:** A can be anything. Too difficult to work with.
Features

• From A to $X \subseteq \mathbb{R}^d$

\[
\begin{align*}
x &= \phi(a) \\
y &= h(x) = h(\phi(a)) = f(a)
\end{align*}
\]

$h : X \subseteq \mathbb{R}^d \rightarrow Y \subseteq \mathbb{R}^e$

$\mathcal{H} \subseteq \{X \rightarrow Y\}$

$T = \{(x_1, y_1), \ldots, (x_N, y_N)\} \subseteq X \times Y$

• Just numbers!
Features for SPAM

\[d = 20,000 \]

\(\phi \) also useful in order to make \(d \) smaller or \(\mathbf{x} \) more informative
Fitting and Learning

- **Loss** \(\ell(y, h(x)) : Y \times Y \rightarrow \mathbb{R}^+ \)
- **Empirical Risk (ER)**: average loss on \(T \)
- **Fitting and Learning**:
 - Given \(T \subset X \times Y \) with \(X \subseteq \mathbb{R}^d \)
 \[\mathcal{H} = \{ h : X \rightarrow Y \} \text{ (hypothesis space)} \]
 - Fitting: Choose \(h \in \mathcal{H} \) to minimize ER over \(T \)
 - Learning: Choose \(h \in \mathcal{H} \) to minimize some risk over previously unseen \((x, y)\)
Summary

• Features insulate ML from domain vagaries
• Loss function insulates ML from price considerations
• Empirical Risk (ER) averages loss for h over T
• ER measures average performance of h
• A learner picks an $h \in \mathcal{H}$ that minimizes some risk
• Data fitting minimizes ER and stops here
• ML wants h to do well also tomorrow
• The risk for ML is on a bigger set
Data Fitting: Univariate Polynomials

\[h : \mathbb{R} \rightarrow \mathbb{R} \]
\[h(x) = c_0 + c_1 x + \ldots + c_k x^k \]

with \(c_i \in \mathbb{R} \) for \(i = 0, \ldots, k \)

- The definition of the structure of \(h \) defines the hypothesis space \(\mathcal{H} \)
- \(T = \{(x_1, y_1), \ldots, (x_N, y_N)\} \subset \mathbb{R} \times \mathbb{R} \)
- Quadratic loss \(\ell(y, \hat{y}) = (y - \hat{y})^2 \)
- ER: \(L_T(h) \overset{\text{def}}{=} \frac{1}{N} \sum_{n=1}^{N} \ell(y_n, h(x_n)) \)
- Choosing \(h \) is the same as choosing \(\mathbf{c} = [c_0, \ldots, c_k]^T \)
- \(L_T \) is a quadratic function of \(\mathbf{c} \)
Rephrasing the Loss

\[
NL_T(h) = \sum_{n=1}^{N} [y_n - h(x_n)]^2 = \\
\sum_{n=1}^{N} \{y_n - [c_0 + c_1 x_n + \ldots + c_k x_n^k]\}^2 \\
= \left\| \begin{bmatrix} y_1 - [c_0 + c_1 x_1 + \ldots + c_k x_1^k] \\ \vdots \\ y_N - [c_0 + c_1 x_N + \ldots + c_k x_N^k] \end{bmatrix} \right\|^2 \\
= \left\| \begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix} - \begin{bmatrix} 1 & x_1 & \ldots & x_1^k \\ \vdots \\ 1 & x_N & \ldots & x_N^k \end{bmatrix} \begin{bmatrix} c_0 \\ \vdots \\ c_k \end{bmatrix} \right\|^2 \\
= \|b - Ac\|^2
\]
Polynomial Fitting: Univariate

Linear System in \(c \)

\[c_0 + c_1 x_n + \ldots + c_k x_n^k = y_n \]

\[A c = b \]

\[A = \begin{bmatrix} 1 & x_1 & \ldots & x_1^k \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_N & \ldots & x_N^k \end{bmatrix} \quad \text{and} \quad b = \begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix} \]

- Where are the unknowns?
- Why is this linear?
Least Squares

\[Ac = b \]

\[b \in \text{range}(A) \]

\[\hat{c} \in \arg \min_c \|Ac - b\|^2 \]

Thus, we are minimizing the empirical risk \(L_T(h) \) (with the quadratic loss) over the training set.
Choosing a Degree

- Underfitting, overfitting, interpolation

$\kappa = 1$

$\kappa = 3$

$\kappa = 9$
Data Fitting: Multivariate Polynomials

- The story is not very different:

\[h(x) = c_0 + c_1 x_1 + c_2 x_2 + c_3 x_1^2 + c_4 x_1 x_2 + c_5 x_2^2 \]

- Polynomial of degree up to 2

\[
A = \begin{bmatrix}
1 & x_{11} & x_{12} & x_{11}^2 & x_{11} x_{12} & x_{12}^2 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
1 & x_{N1} & x_{N2} & x_{N1}^2 & x_{N1} x_{N2} & x_{N2}^2 \\
\end{bmatrix},
\]

\[
b = \begin{bmatrix}
y_1 \\
\vdots \\
y_N \\
\end{bmatrix},
\quad c = \begin{bmatrix}
c_0 \\
\vdots \\
c_5 \\
\end{bmatrix}
\]

- The rest is the same
- Why are we not done?
Counting Monomials

- Monomial of degree $k' \leq k$ in d variables:
 \[x_1^{k_1} \ldots x_d^{k_d} \text{ where } k_1 + \ldots + k_d = k' \]

- How many monomials of degree up to k are there?
 \[m(d, k) = \binom{d + k}{k} \]

(See an Appendix for a proof)
Asymptotics: Too Many Monomials

\[m(d, k) = \binom{d+k}{k} = \frac{(d+k)!}{d!k!} = \frac{(d+k)(d+k-1)\ldots(d+1)}{k!} \]

- \(k \) fixed: \(O(d^k) \)
- \(d \) fixed: \(O(k^d) \)

- When \(k \) is \(O(d) \), look at \(m(d, d) \):

\[m(d, d) \text{ is } O\left(\frac{4^d}{\sqrt{d}}\right) \]

- Except when \(k = 1 \) or \(d = 1 \), growth is polynomial (with typically large power) or exponential (if \(k \) and \(d \) grow together)

- This difficulty is specific to polynomials

- Affine polynomials (\(k = 1 \)), are the lone exception: \(O(d^1) = O(d) \), linear in the number \(d \) of variables
The Curse of Dimensionality

- A large d is typically troublesome
- We want T to be “representative”
- “Filling” \mathbb{R}^d with N samples
 \[X = [0, 1]^2 \subset \mathbb{R}^2 \]
 10 bins per dimension, 10^2 bins total
 \[X = [0, 1]^d \subset \mathbb{R}^d \]
 10 bins per dimension, 10^d bins total
- d is often hundreds or thousands (SPAM $d \approx 20,000$)
- 10^{80} atoms in the universe
- *We will always have too few data points*
- This difficulty is general