Linear Predictors Part 1

COMPSCI 371D — Machine Learning
Outline

1. Definitions and Properties
2. The Least-Squares Linear Regressor
3. The Logistic-Regression Classifier
4. Probabilities and the Geometry of Logistic Regression
Definitions

- A linear regressor fits an affine function to the data
 \[y \approx h(x) = b + w^T x \quad \text{for} \quad x \in \mathbb{R}^d \text{ and } y \in \mathbb{R} \]
- A linear, binary classifier separates the data in \(X \subseteq \mathbb{R}^d \) corresponding to the two classes in \(Y = \{ c_0, c_1 \} \) with a hyperplane
- The actual data can be separated only if it is linearly separable (!)
- Multi-class linear classifiers separate any two classes with a hyperplane
- The resulting decision regions are convex and simply connected (polyhedra)
Properties of Linear Predictors

- Linear Predictors...
 - ...have a very small \mathcal{H} with $d + 1$ parameters (resist overfitting)
 - ... are trained by solving a convex optimization problem (global optimum)
 - ... are fast at inference time (and training is not too slow)
 - ... work well if the data is close to linearly separable
The Least-Squares Linear Regressor

- *Déjà vu*: Polynomial regression with $k = 1$

 $y \approx h_v(x) = b + w^T x$ for $x \in \mathbb{R}^d$

- Parameter vector $v = \begin{bmatrix} b \\ w \end{bmatrix} \in \mathbb{R}^{d+1}$

 \mathcal{H} isomorphic to \mathbb{R}^m with $m = d + 1$

- “Least Squares:” $\ell(y, \hat{y}) = (y - \hat{y})^2$

- $\hat{v} = \arg\min_{v \in \mathbb{R}^m} L_T(v)$

- Risk $L_T(v) = \frac{1}{N} \sum_{n=1}^{N} \ell(y_n, h_v(x_n))$

- We know how to solve this
Linear Regression Example

- Left: All of Ames. Residual $\sqrt{\text{Risk}}$: $55,800$
- Right: One Neighborhood. Residual $\sqrt{\text{Risk}}$: $23,600$
- Left, yellow: Ignore two largest homes
Binary Classification by Logistic Regression

\[Y = \{ c_0, c_1 \} \]

- Multi-class case later
- The *logistic-regression classifier* is a classifier!
- A *linear* classifier implemented through regression
- The *logistic* is a particular function
The Logistic-Regression Classifier

Score-Based Classifiers

\[Y = \{ c_0, c_1 \} \]

- Think of \(c_0, c_1 \) as numbers: \(Y = \{ 0, 1 \} \)
- We saw the idea of level sets:
 Regress a score function \(s(x) \) such that
 \(s(x) \) is large where \(y = 1 \), small where \(y = 0 \)
- Threshold \(s \) to obtain a classifier:
 \[
 h(x) = \begin{cases}
 c_0 & \text{if } s(x) \leq \text{threshold} \\
 c_1 & \text{otherwise.}
 \end{cases}
 \]
- A linear classifier implemented through regression
Idea 1

- \(s(\mathbf{x}) = b + \mathbf{w}^T \mathbf{x} \) and quadratic loss
- Red: score function. Orange: \(h(\mathbf{x}) \)

- Not so good!
- The quadratic loss is not what we care about
- A line does not approximate a step well
- Why not fit a step function and use the 0-1 loss?
- No gradient. NP-hard unless the data is separable or \(d = 1 \)
Idea 2

- How about a “soft step?” The logistic function \(f(x) \) \(\overset{\text{def}}{=} \frac{1}{1+e^{-x}} \)

- Distant points are no longer a big problem
- If a true step moves, the risk does not change until a data point flips label
- If the logistic function moves \((f(x) \rightarrow f(x - s))\), the risk changes gradually
- We have a nonzero gradient almost everywhere!
- The optimization problem is no longer combinatorial
What is a Logistic Function in d Dimensions?

- We want a *linear* classifier
- The level crossing must be a hyperplane
- Level crossing: Solution to $s(x) = 1/2$
- Shape of the crossing depends on s
- Compose an affine $a(x) = c + u^T x$
 ...with a monotonic $f(a)$ that crosses $1/2$
 $s(x) = f(a(x)) = f(c + u^T x)$
- Then, if $f(\alpha) = 1/2$, the equation $s(x) = 1/2$
 is the same as $c + u^T x = \alpha$
- A hyperplane!
- Let f be the logistic function
The Logistic-Regression Classifier

Example

- Gold line: Regression problem $\mathbb{R} \rightarrow \mathbb{R}$
- Black line: Classification problem $\mathbb{R}^2 \rightarrow \mathbb{R}$
 (result of running a logistic-regression classifier)
- Labels: Good (red squares, $y = 1$) or poor quality (blue circles, $y = 0$) homes
- All that matters is how far a point is from the black line
A Probabilistic Interpretation

- All that matters is how far a point is from the black line.
- Convert activation $a(x)$ to a signed distance $\Delta(x)$.
- $s(x) = f(\Delta(x))$ where Δ is a signed distance.
- We could interpret the score $s(x)$ as “the probability that $y = 1$” $f(\Delta(x)) = \mathbb{P}[y = 1]$.
- (...or as “1– the probability that $y = 0$”)
- $\lim_{\Delta \to -\infty} \mathbb{P}[y = 1] = 0$
- $\Delta = 0 \Rightarrow \mathbb{P}[y = 1] = 1/2$ (just like the logistic function)
Ingredients for the Regression Part

• Determine the distance Δ of a point $\mathbf{x} \in X$ from a hyperplane χ, and the side of χ on which the point is on (Geometry: affine functions as unscaled, signed distances)

• Specify a monotonically increasing function f that turns $\Delta(\mathbf{x})$ into a probability $p = f(\Delta(\mathbf{x}))$ (Choice based on convenience: the logistic function)

• Define a loss function $\ell(y, p)$ that measures how good p is given the true label y (Convenience again: choose ℓ so that $\ell(y, f(\Delta(\mathbf{x})))$ is a convex risk: The cross-entropy loss)
Normal to a Hyperplane

- Hyperplane χ: $b + \mathbf{w}^T \mathbf{x} = 0$ (w.l.o.g. $b \leq 0$)
- $\mathbf{a}_1, \mathbf{a}_2 \in \chi \Rightarrow \mathbf{c} = \mathbf{a}_1 - \mathbf{a}_2$ parallel to χ
- Subtract $b + \mathbf{w}^T \mathbf{a}_1 = 0$ from $b + \mathbf{w}^T \mathbf{a}_2 = 0$
- Obtain $\mathbf{w}^T \mathbf{c} = 0$ for any $\mathbf{a}_1, \mathbf{a}_2 \in \chi$
- \mathbf{w} is perpendicular to χ
Distance of a Hyperplane from the Origin

- Unit-norm version of \mathbf{w}: $\mathbf{n} = \frac{\mathbf{w}}{||\mathbf{w}||}$
- Rewrite χ: $b + \mathbf{w}^T \mathbf{x} = 0$ (w.l.o.g. $b \leq 0$) as $\mathbf{n}^T \mathbf{x} = \beta$ where $\beta = -\frac{b}{||\mathbf{w}||} \geq 0$
- Line along \mathbf{n}: $\mathbf{x} = \alpha \mathbf{n}$ for $\alpha \in \mathbb{R}$ (parametric form)
 - α is the signed distance from the origin
- Replace into eq. for χ: $\alpha \mathbf{n}^T \mathbf{n} = \beta$ that is, $\alpha = \beta \geq 0$
- In particular, $\mathbf{x}_0 = \beta \mathbf{n}$
- β is the distance of χ from the origin
Signed Distance of a Point from a Hyperplane

\[\mathbf{n}^T \mathbf{x} = \beta \]
where \(\beta = -\frac{b}{\|\mathbf{w}\|} \geq 0 \) and \(\mathbf{n} = \frac{\mathbf{w}}{\|\mathbf{w}\|} \)

\(\mathbf{x}_0 = \beta \mathbf{n} \)

• In one half-space, \(\mathbf{n}^T \mathbf{x} \geq \beta \)
• Distance of \(\mathbf{x} \) from \(\chi \) is \(\mathbf{n}^T \mathbf{x} - \beta \geq 0 \)
• In other half-space, \(\mathbf{n}^T \mathbf{x}' \leq \beta \)
• Distance of \(\mathbf{x}' \) from \(\chi \) is \(\beta - \mathbf{n}^T \mathbf{x}' \geq 0 \)
• On decision boundary, \(\mathbf{n}^T \mathbf{x} = \beta \)

\(\Delta(\mathbf{x}) \overset{\text{def}}{=} \mathbf{n}^T \mathbf{x} - \beta \) is the signed distance of \(\mathbf{x} \) from the hyperplane
Summary

If \(\mathbf{w} \) is nonzero (which it has to be), the distance from the origin of the hyperplane \(\chi \) with equation \(b + \mathbf{w}^T \mathbf{x} = 0 \) is

\[
\beta \overset{\text{def}}{=} \frac{|b|}{\|\mathbf{w}\|}
\]

(a nonnegative number) and the quantity

\[
\Delta(\mathbf{x}) \overset{\text{def}}{=} \frac{b + \mathbf{w}^T \mathbf{x}}{\|\mathbf{w}\|}
\]

is the \textit{signed distance} of point \(\mathbf{x} \in \mathcal{X} \) from hyperplane \(\chi \). Specifically, the distance of \(\mathbf{x} \) from \(\chi \) is \(|\Delta(\mathbf{x})| \), and \(\Delta(\mathbf{x}) \) is nonnegative if and only if \(\mathbf{x} \) is on the side of \(\chi \) pointed to by \(\mathbf{w} \). Let us call that side the \textit{positive half-space} of \(\chi \).