
Improving Neural Network Generalization

COMPSCI 371D — Machine Learning

COMPSCI 371D — Machine Learning Improving Neural Network Generalization 1 / 17



Outline

1 Motivation

2 Regularization

3 Data Augmentation

4 Network Depth and Batch Normalization (optional material)

COMPSCI 371D — Machine Learning Improving Neural Network Generalization 2 / 17



Motivation

Motivation

• Stochastic Gradient Descent (SGD) is the main algorithm
for training neural networks
• However, without further attention, networks often fail to

generalize
• Some fixes:

• Regularization to shrink the hypothesis space:
(momentum,) weight decay, early termination, and dropout

• Making up data: data augmentation
• We can now increase depth

• Vanishing and exploding gradients
• Batch normalization

COMPSCI 371D — Machine Learning Improving Neural Network Generalization 3 / 17



Regularization

Regularization

• The capacity of deep networks is very high: It is often
possible to achieve near-zero training loss
• “Memorize the training set” ⇒ overfitting
• All training methods use some type of regularization
• Regularization can be seen as inductive bias: Bias the

training algorithm to find weights with certain properties
• Simplest method: weight decay, add a term λ‖w‖2 to LT (w)

• Keeps the weights small (Tikhonov)
• Other proposals have been made, including early

termination and dropout
• Often several or all methods are used in combination

COMPSCI 371D — Machine Learning Improving Neural Network Generalization 4 / 17



Regularization

Early Termination

• Early termination is also regularization
• Terminating training well before the LT is minimized is

somewhat similar to “implicit” weight decay
• Progress at each iteration is limited, so stopping early keeps

us close to w0, which is a set of small random weights
• Therefore, the norm of wt is restrained, albeit in terms of

how long the learner takes to get there rather than in
absolute terms

COMPSCI 371D — Machine Learning Improving Neural Network Generalization 5 / 17



Regularization

Informed Early Termination
• A more informed approach to early termination stops when

a validation risk (or, even better, error rate) stops declining
• This is arguably the most widely used regularization method

[plot from https://machinelearningmastery.com/
how-to-stop-training-deep-neural-networks-at-the-right-time-using-early-stopping]

COMPSCI 371D — Machine Learning Improving Neural Network Generalization 6 / 17

https://machinelearningmastery.com/how-to-stop-training-deep-neural-networks-at-the-right-time-using-early-stopping
https://machinelearningmastery.com/how-to-stop-training-deep-neural-networks-at-the-right-time-using-early-stopping


Regularization

Dropout
• Dropout inspired by ensemble methods (random forests):

Regularize by averaging multiple predictors
• Key difficulty: It is too expensive to train an ensemble of

deep neural networks
• Efficient (crude!) approximation:

• Before processing a new mini-batch, flip a coin with
P[heads] = p (typically p = 1/2) for each neuron

• Turn off the neurons for which the coin comes up tails
• Restore all neurons at the end of the mini-batch
• When training is done, multiply all weights by p

• This is very loosely akin to training a different network for
every mini-batch
• Multiplication by p takes the “average” of all networks
• There are flaws in the reasoning, but the method works

COMPSCI 371D — Machine Learning Improving Neural Network Generalization 7 / 17



Regularization

COMPSCI 371D — Machine Learning Improving Neural Network Generalization 8 / 17



Data Augmentation

Data Augmentation
• Data augmentation is not a regularization method, but

combats overfitting
• Make new training data out of thin air
• Given data sample (x, y), create perturbed copies x1, . . . ,xk

of x (these have the same label!)
• Add samples (x1, y), . . . , (xk , y) to training set T
• With images this is easy. The xis are cropped, rotated,

stretched, re-colored, . . . versions of x
• One training sample generates k new ones
• T grows by a factor of k + 1
• Very effective, used almost universally
• Need to use realistic perturbations

COMPSCI 371D — Machine Learning Improving Neural Network Generalization 9 / 17



Data Augmentation

Data Augmentation

[image from https://algorithmia.com/blog/introduction-to-dataset-augmentation-and-expansion]

COMPSCI 371D — Machine Learning Improving Neural Network Generalization 10 / 17

https://algorithmia.com/blog/introduction-to-dataset-augmentation-and-expansion


Network Depth and Batch Normalization (optional material)

Current Trend: Go Deeper
[Material on this and subsequent slides is optional]
• If the output of the last layer comes from a ReLU, it is

nonnegative
• Therefore, an additional layer, even with ReLU, can

implement the identity by setting V = I and b = 0
• Therefore, more layers give more capacity (expressive

power)
• So, why not go deeper?
• Two problems with greater capacity:

• Overfitting
• Vanishing or exploding gradients

• Overfitting can be controlled by regularization

COMPSCI 371D — Machine Learning Improving Neural Network Generalization 11 / 17



Network Depth and Batch Normalization (optional material)

Vanishing or Exploding Gradients
(1)f f (2) f (3)

w(1) w(2) w(3)

(1)x (2)x (3)x     = p(0)xn   x= l n

ny

l

• The recursion ∂`n
∂x(k−1) =

∂`n
∂x(k)

∂x(k)

∂x(k−1) yields
∂`n
∂x(i) =

∂`n
∂x(K )

∂x(K )

∂x(K−1) . . .
∂x(i+1)

∂x(i) = ∂`n
∂x(K ) JK · . . . · Ji+1

• Feedback signal (gradient) from loss `n to layer i , and
therefore also ∂`n

∂w(i) =
∂`n
∂x(i)

∂x(i)

∂w(i) , depends on the product
J(i) = JK · . . . · Ji+1 of layer Jacobians
• det(J(i)) = det(JK ) · . . . · det(Ji+1) determines (pun intended)

the magnitude of the gradient
• Vanishing gradients choke information flow: No progress in

early layers
• Exploding gradients cause instability during training

COMPSCI 371D — Machine Learning Improving Neural Network Generalization 12 / 17



Network Depth and Batch Normalization (optional material)

Batch Normalization
• Ideally, we would like the norms of all activations

x(0), . . . ,x(K ) to be equal (det(Ji) ≈ 1)
• Suppose that we could interpose a layer βk between layers

k and k + 1 that subtracts the mean of all possible outputs
x(k) from layer k and divides by their standard deviation:

x̂ (c)
nk =

x (c)
nk −µ

(c)
k

σ
(c)
k

for component c of xnk (sample n, layer k )

• Then, layer k together with βk has normalized outputs
• If we do this for all layers, all layers transform normalized

inputs to normalized outputs
• Problem 1: We don’t know “all possible outputs x(k) from

layer k ” because the network changes during training
• Problem 2: We limit the expressive power of the network

COMPSCI 371D — Machine Learning Improving Neural Network Generalization 13 / 17



Network Depth and Batch Normalization (optional material)

Batch Normalization
• Normalize each activation by an estimate of its mean and

standard deviation
• During training, compute the estimate over each mini-batch
• During inference, use the the mean estimate over all

mini-batches
• Let x be a scalar activation just before a non-linearity
• Let µ, σ be the sample mean and standard deviation of x

over the current mini-batch
• Pass x through a Batch Normalization (BN) module that

• Normalizes each component of x: x̂ = x−µ
σ

• Computes z = γx̂ + β

• The learnable parameters γ and β restore the layer’s
expressive power

COMPSCI 371D — Machine Learning Improving Neural Network Generalization 14 / 17



Network Depth and Batch Normalization (optional material)

Normalization and De-Normalization
• Wait, what? What is the point of normalizing x to x̂ = x−µ

σ

and then let the network undo the normalization by
z = γx̂ + β?
• Why we must do this: If we don’t, we restrict the expressive

power of the layer
• Why we can do this: The de-normalization is local
• If, say, γ = 2 in layer k , then mini-batch inputs to layer k + 1

are twice as large, and will be normalized again in layer
k + 1 by a σ that is also twice as big
• BN in layer k accounts for all the γs in previous layers
• The γs in different layers do not multiply
• Last layer does not have batch normalization

COMPSCI 371D — Machine Learning Improving Neural Network Generalization 15 / 17



Network Depth and Batch Normalization (optional material)

Example

• Only look at standard deviations for simplicity
(Similar considerations hold for means)
• Start with γ1 = 1 in layer 1
• Outputs of layer 2 have standard deviation σ2 before BN
• Now change γ1 to γ′1 = 2
• Outputs from layer 2 now have σ′2 = 2σ2 before BN
• They are twice as big, but BN divides them by a standard

deviation that is twice as big as well
• µ, σ statistics of the outputs from layer 2 are unchanged

after BN
• Key point: γ1, β1 affect µ2, σ2

COMPSCI 371D — Machine Learning Improving Neural Network Generalization 16 / 17



Network Depth and Batch Normalization (optional material)

Going Deeper

• With batch normalization, gradients are tame
• Need to compute BN Jacobians for back-propagation
• Need to store estimates of µ, σ for inference
• Everything else remains the same
• Network depth is no longer a problem for training
• Regularization reduces overfitting for deep networks
• Networks with BN often have tens or hundreds of layers
• A network with 1000 layers was shown to be trainable

Deep Residual Learning for Image Recognition, He et al., ArXiv, 2015

• Of course, regularization and data augmentation are now
even more crucial

COMPSCI 371D — Machine Learning Improving Neural Network Generalization 17 / 17


	Motivation
	Regularization
	Data Augmentation
	Network Depth and Batch Normalization (optional material)

