
Introduction to Computer Systems
Computer Science 210

Fall 2024

Instructor: Jeff Chase

CPS 210 is an introduction to systems software and computer architecture, with programming exercises in
the C language on the Linux operating system. Prerequisite: CPS 201.

Learning objectives

1. (Overall) Understand how software runs on real machines and operating systems, including implemen-
tation of selected programming language constructs (e.g., functions/procedures, loops, conditionals).

2. Understand the key programming language concepts within the C language (e.g., types, operators,
control flow) and the surrounding ecosystem (e.g., compiler, linker, debugger).

3. Understand memory safety and memory protection, to establish concepts underlying computer security
and modern safe programming languages.

4. Understand foundations of the instruction set architecture (ISA) for CPU hardware and how C programs
are mapped to machine-level instructions.

5. Understand the role of the operating system, OS abstractions provided to user programs (e.g., processes,
files), and how the underlying hardware enables them.

6. Implement non-trivial programs in C that interact with details of the underlying machine architecture
(e.g., stack layouts) or interfaces provided by the operating system (e.g., threads, mutexes).

7. Understand key factors that impact performance and resource efficiency as a result of hardware and
software running underneath your programs (e.g., I/O, caching, multi-core).

Changes. This version of CPS 210 differs from earlier offerings:

• Modular flow follows the online textbook Dive Into Systems (DIS).

• Focus on software and safety. Reduce overlap with CPS 250 (Architecture).

• Introduce architecture topics with a simplified assembly language and machine emulator called Facile.
Continue with x86-64, focusing on data representation, procedure call/return, and stack security.

Here is a plan of lectures and readings for the semester. For each lecture session there is a small lab exercise.
Some lectures are replaced with topic review sessions: examples and exercises for key concepts, with no lab.
Any new material on topic review days is out of scope for exams—unless we need a weather makeup day.

1 C: A Systems Programming Language

This module gets you started with C, the foundational language for efficient programs with access to the full
power of the machine and operating system. We revisit key ideas from CS 201 from the perspective of C
programming. C is a programming language without guardrails: because it lacks (or predates) safety features
of languages like Java or Rust, it has certain hazards to lure you into dangerous mistakes, some of which



open security holes for hackers to exploit. Understanding how and why can make you a better programmer
with appreciation for the safety of modern languages and the costs of providing that safety.

1. Course intro. The objectives are to introduce the course and get up and running with C. We touch on
several topics to discuss in more detail later. Programs and processes. How a computer runs a program:
systems programming and the machine. Example: the Facile abstract machine. Overview of programming
languages, compilation, libraries, and linking. Similarities between C and Java. Differences: programming
without objects. The C standard library (stdlib/libc), I/O channels, and printf.
Reading. Facile ASM document (focus on §1, §2, and §3.3). DIS Chapter 1 and/or Appendix 1 (Chapter 16),
also see §2.9.1.
Lab: setup, debug. C/Linux development, building with make, debugging with gdb.

2. Systems programming and memory safety. Memory space: where is your data? Types: numbers,
characters (char) as byte-size numbers. Compound types: arrays and structs. C constructs and examples:
typedef, switch, enum. How C arrays are stored in memory and indexed. Strings as arrays of char. Bounds
checking and the idea of memory safety. Data items occupy space; memory safety means that operations on
an item affect only the space the item occupies. Why C is unsafe. Space for strings: the idea of a byte array
as a string buffer. Review from CS 201: strings in Java vs. dynamic StringBuilder. Arrays and strings as
pointers. Java references vs. C pointers. A peek at the machine model.
Reading. DIS §2.1-§2.3. Reread §1.5 and look into str functions in §2.6.
Lab: disassembler. Simple disassembler for Facile. Involves array lookup, printf, switch, enum, external
symbols.

3. Functions and the call stack. Recap on pointers and strings. Using str functions to work with
strings and strn functions to do it safely. CS 201 review: functions, APIs, arguments and argument passing,
pass-by-value, pass-by-value-of-reference, automatic memory allocation for local variables, scope and lifetime,
stack discipline (LIFO) and the call stack, importance of the stack for recursion. Mutability and ownership
for reference (pointer) arguments passed to APIs. The stack and memory safety in C: memory reuse, behavior
of uninitialized local variables, dangling references.
Reading. DIS §3.1-§3.2. Reread §1.4.
Lab: kvlog: Label Log: a log-based dictionary to map label names. Involves buffering, ownership, working
with strings and arrays, &.

4. Dynamic data structures: the heap. Heap allocation and deallocation in Java vs. C. CS 201 review:
Java new() and automatic memory management in Java. Why C programmers have to use sizeof, type
casting, and free. Common heap mistakes and the heap “contract”. Memory safety errors: faults, undefined
behavior, memory leaks. Using valgrind tool to detect memory safety errors.
Reading. DIS §2.4-§2.7, §3.3.
Lab: pointers. Using C pointers and malloc; strings and linked lists in the heap with recursion. Project KV
out.

5. The C programming environment. More about program build, launch, and exit. Inside your program
file. What the debugger knows: the symbol table. What the operating system knows: program sections and
entry points. The truth about main(). Program arguments: argc and argv (vs. multi-dimensional arrays).
How to read program input safely.
Reading. DIS §2.8-§2.9, (Save §2.9.3-§2.9.4 about pointer arithmetic for later.)
Lab: ring. Encoder/decoder ring.

2 Data: Binary Representation

One reason to study C is that it enables you to work with memory below the type system. Learning objectives
for this unit: understand the abstraction of raw memory space as a resource for storing data of all types
(“just bits”); how various data types are represented compactly in memory; limitations and tradeoffs of these
representations; how to operate on data at the bit level and why it is useful. This unit also explores how

2



complex data types are laid out in memory and how code finds what it is looking for.

6. Integers and arithmetic. Number bases: binary and hexadecimal. Unsigned integers. Negative
numbers with two’s complement. Integer widths and range. Modular addition and overflow. Characters as
small integers: ASCII. integer byte ordering.
Reading. DIS §4.1-§4.5.
Lab: binhex. Converting between binary and hexadecimal.

7. Working with bits and boolean operators. Boolean operators and boolean algebra. Bitwise boolean
operators in C. Using bitwise operators to manipulate numbers and addresses: alignment, equality, subtraction
with negation and addition, using shifts to multiply and divide.
Reading. DIS §4.6.
Lab: bits. Working with bits and boolean operations.

8. Data layout and binary encodings. Array addressing, pointer arithmetic, and void*. Blocks and
offsets. Padding to preserve alignment. Inside malloc. Compact encodings with bit fields. Using shifts and
masks to select bits. Example: compact sets as bit arrays. Floating point representation and the problem of
precision. Representing media: images.
Reading. DIS §2.9.3-§2.9.4, §4.7-§4.8.
Lab: offsets Struct layout and pointer arithmetic. Project alloc out.

9. Topic review: Systems programming in C. Example: representing playing cards. Type casts and
type safety revisited. Topic: “endianness”, and the need for byte swapping in networks. Discussion of linking
and how the linker constructs the parts (sections) of a binary program file.

10. Midterm 1. Friday, September 27. Covers 1-8.

3 Code: Instructions for a CPU Core

The purpose of this unit is to demystify machine-level computation and give you some familiarity with
machine code at the assembler (ASM) level, and how it runs. The details are machine-specific and assembler-
specific. We introduce concepts using facileASM—a simple abstract machine with certain messy details out
of scope. Details from Intel x86-64 (“x64”) illustrate and extend the concepts. Learning objectives: (1)
understand digital logic as the building blocks of computer hardware; (2) establish ASM concepts and terms
that are common across CPU architectures; (3) understand trends in CPU technology and their impact
on programming for performance; (4) demonstrate how compiler-generated code implements programming
language features (conditionals, loops, functions) at the machine level; (5) develop confidence to “dive into”
ASM code when called to it.

11. Computation in hardware and software. The parts of a computer. A peek at digital logic: gates
and circuits. Clocked logic and cycle time. Overview of Instruction Set Architecture (ISA) terms and concepts:
instructions, opcodes, operands, registers. Memory accesses in the instruction stream: RISC vs. CISC
architectures. Performance: latency and throughput, illustrated with multicore. Big-O analysis revisited.
Reading. Review Facile §3. DIS §5.1-§5.5, §5.9.
Note: DIS §5.4 and §5.9.1 are optional and out of scope for this course.
Lab: images. Use file I/O and boolean operations to process image files.

12. The CPU core. Instructions and operands. Registers. The program counter (PC) or instruction pointer
(IP) register. The stack pointer (SP) register. Push and pop instructions and stack alignment. Typeless
execution: instruction suffixes for data unit size, operand variants for signed vs. unsigned arithmetic. Indirect
addressing: addressing local variables and heap blocks. Argument passing. What the compiler knows.
Reading. DIS §5.6. §6.
Lab: mystery. Using gdb to disassemble x64 instructions.

13. Control structures. Branches and conditional branches. Analogy to history: goto statements, labels,
and spaghetti code. How to implement basic control structures at the machine level: conditionals, loops.

3



switch, procedure call and return. Indirect jumps, jump tables, and C function pointers.
Reading. DIS §7.4. Optional: DIS §7/1-7.3.
Lab: asm. Loops and conditionals in facileASM.

14. Topic review: ISA discussion. ISA examples: x64 and ARM. Registers and their usage, basic
instruction opcodes, operand variants, data addressing, condition codes. Memory addressing with the
infamous x64 load effective address instruction.
Reading. Optional: material drawn from DIS §7 (x86-64) and §9 (ARM).
Lab. No lab. Friday before Fall Break: October 11.

15. Procedures and recursion. ISA features for procedure/function call and return. The return address
on the stack. Passing arguments and return value. Modularity reconsidered: calling conventions, register spills,
and register usage conventions. Recursion example for x86-64 from DIS §7.6. In scope: stack instructions
pushq and popq and their use for register spills; callq, and retq and their use for function call/return; effects
of these instructions on the stack; accessing arguments and local variables within a procedure; recognize
situations that call for register spills.
Reading. DIS §7.5 and §7.6 (x86-64).
Lab: interpret. Function pointers and 8-bit stack machine.

4 Software on the Machine

This module focuses on the system environment for your programs, and its impact on performance and
security.

16. Stack buffer overflow and security. Vulnerabilities and Remote Code Execution (RCE) attacks.
Overflowing a local variable. Smashing the return address. Code injection. How an attacker uses knowledge of
address space layout to exploit an overflow vulnerability and mount an RCE attack. Defenses: no-execute (NX)
data segments, address space layout randomization (ASLR). Cyberwar examples: the story of EternalBlue.
Reading. DIS §7.10 (x86-64).
Lab: binary. Linking or DIS Guessing Game (TBD). Project attack out.

17. Storage. The memory/storage hierarchy or “pyramid”. Latency and throughput. The von Neumann
bottleneck. I/O operations and DMA. Blocks and block I/O. Volatile vs. non-volatile storage. The problem
of crash recovery. SSDs vs. spinning disks. Overhead and the I/O bottleneck. The impact of transfer size on
throughput. Memory as a cache over storage. Spatial locality and temporal locality.
Reading. DIS §11.1-§11.3.
Lab: locality. Loops in a 3D array and their effect on performance. See DIS §11.3.1.

18. Caching. Locality revisited. Caching: hit or miss. Hit/miss ratio and performance. Mechanics: blocks,
lines, and slots. Cold/compulsory misses and capacity misses in a “perfect” (fully associative) cache. The
impact of spatial locality on cold misses. The impact of temporal locality on capacity misses. Keeping
track of the cache contents. Basics of cache mapping: Block number, slot index, byte offset. Hash tables in
software and hardware. Direct-mapped caches. Conflict misses in a direct-mapped cache. Cache analysis and
cachegrind.
Reading. DIS §11.4-§11.6.
Lab: casim. Direct-mapped cache simulator. See also cachechecker for tag/index/block combinations.

19. The process and the kernel. The kernel: protected CPU mode and space. Booting the kernel.
Getting into it: system calls and faults as examples of Exceptional Control Flow (ECF), the foundation of
modern operating systems. Processes and the process ID. Process blocking and context switch. Process
creation: parent and child. Where argv comes from. The abstraction of virtual memory.
Reading. DIS §13.1-§13.4. (We gloss over fork/exec.)
Lab: files. File I/O (TBD).

4



20. Virtualization. How to share a machine transparently among many processes? Sharing the processors:
timeslicing. Sharing machine memory: pages, page translation, and page protections. Translation at hardware
speeds: the MMU. Mapping again: page tables to map virtual addresses to physical addresses. Protection
faults and segmentation faults revisited. Role of the kernel in handling faults.
Reading. DIS §13.3-§13.5.
Lab: vasim. Virtual page simulator. Project KVcache out.

21. Topic Review: the Machine. OS topics: Unix/Linux fork/exec/exit/wait. Topics for linking and
address spaces: relocation, position-independent code (PIC), dynamic linking for shared libraries (DLLs).

22. Midterm exam 2. Friday, November 8. Covers lectures in range 1-20, with emphasis on 11-20.

5 Parallelism and Concurrency

23. Parallelism and coordination. Pipelining: doing the laundry. Pipelining in the CPU. Pipelining
with Inter-process communication (IPC). The bounded buffer abstraction and its use for pipes and sockets.
Logical concurrency (timeslicing) and physical concurrency (e.g., multicore) revisited. Coordination needs for
pipes and sockets. CPU utilization as a metric of efficiency.
Reading. Parallelism in the CPU: DIS §5.7 and §5.9. IPC: DIS §13.4. (Skim §13.4.1; we won’t discuss signals).
Lab: amdahl. Performance for parallel tasks. [TBD]

24. Threads. Processes vs. threads. Posix threads (pthreads) API. Why use threads? What metrics show
the benefit? Three application template examples or design patterns. (1) Parallel computing: speedup and
Amdahl’s Law. (2) Servers: request throughput and response time. (3) Graphical user interface: events with
background processing. Coordination in shared memory. Why threads run with a non-deterministic schedule
and interleaving. The problem of data races.
Reading. DIS §14.1-§14.2.
Lab: threads. Thread intro.

25. Synchronization. Concurrency control with mutexes and conditions in the pthreads API. Example:
the soda machine as a bounded buffer.
Reading. DIS §14.3. (Skim 14.3.2: we won’t discuss semaphores.)
Lab: lock. Mutexes for safe array access.

26. Using synchronization. Barrier and other examples. Thundering herds. Deadlock. The Dining
Philosophers. Starvation.
Reading. DIS §14.3.3.
Lab: wait. Using conditions to wait for events.

27. Topic Review: Concurrency. Threads backlash: reactive programming and the need for state.

28. Wrapup: LDOC.

5


	C: A Systems Programming Language
	Data: Binary Representation
	Code: Instructions for a CPU Core
	Software on the Machine
	Parallelism and Concurrency

