CompSci 334 Spring 2024 11/19/24

Section: Recursively Enumerable Languages

Definition: A language L is recursively enumerable if there exists a TM M such that $L=L(M)$.

Definition: A language L is recursive if there exists a TM M such that $\mathrm{L{=}}\mathrm{L}(\mathrm{M}{})\ \mathrm{and}\ \mathrm{M}\ \mathrm{halts\ on\ every}\ \mathrm{w{}\in \Sigma^{+}}.$

To enumerate all $\mathbf{w} \in \Sigma^+$ in a recursive language L:

- Let M be a TM that recognizes L, $L = L(M).$
- Construct 2-tape TM M'
	- Tape 1 will enumerate the strings $\overline{\ln}\ \overline{\Sigma^{+}}$

Tape 2 will enumerate the strings in L.

- On tape 1 generate the next $\textbf{string}^{\top} \textbf{v} \textbf{ in } \overset{\top}{\Sigma^+}$
- simulate M on v if M accepts v, then write v on tape 2.

To enumerate all $\mathbf{w}{\in}\Sigma^{+}$ in a recursively enumerable language L:

Repeat forever

- Generate next string (Suppose k strings have been generated: $w_1,w_2,...,w_k)$
- Run M for one step on w_k $\mathbf{Run}~\mathbf{M}$ for two steps on w_{k-1}

 $\mathbf{Run} \ \mathbf{M} \ \textbf{for} \ \mathbf{k} \ \textbf{steps} \ \textbf{on} \ \textcolor{red}{w_1}.$ If any of the strings are accepted then write them to tape 2.

STOPPED

Theorem Let S be an infinite countable set. Its powerset 2^S is not countable.

Proof - Diagonalization

• S is countable, so it's elements can be enumerated.

 ${\bf S} = \{s_1, s_2, s_3, s_4, s_5, s_6 \ldots \}$ $\textbf{Example, } \{s_2, s_3, s_5\} \textbf{ represented by }$

Example, set containing every other element from S, starting with s_1 is $\{s_1,s_3,s_5,s_7,\ldots\}$ represented by

Suppose 2^S countable. Then we can emunerate all its elements: $t_1,\,t_2,\,...$

	s_1 s_2 s_3 s_4 s_5 s_6 s_7				
	t_2 1 1 0 0 1 1			$\bf{0}$	
	t_3 0 0 0 0 1 0			$\bf{0}$	
	t_4 1 0 1 0 1 1			$\bf{0}$	
	t_5 1 1 1 1 1 1			$\mathbf 1$	
	t_6 1 0 0 1 0 0			$\mathbf{1}$	
t_7	0 1 0 1 0 0			O	

Theorem For any nonempty Σ , there exist languages that are not recursively enumerable.

Proof:

• A language is a subset of Σ^* . The set of all languages over Σ is Theorem There exists a recursively enumerable language L such that \bar{L} is not recursively enumerable.

Proof:

\n- Let
$$
\Sigma = \{a\}
$$
 Enumerate all TM's over Σ :
\n

Theorem If languages L and L are both RE, then L is recursive.

Proof:

• $\exists M_1$ s.t. M_1 can enumerate all elements in L.

 $\exists M_2$ s.t. M_2 can enumerate all elements in \bar{L} .

To determine if a string w is in L or not in L

Theorem: If L is recursive, then \overline{L} is recursive.

Proof:

• L is recursive, then there exists a TM M such that M can determine if w is in L or w is not in L. Construct TM M' that does the following. M' first simulates TM M.

Hierarchy of Languages:

Definition A grammar $G=(V,T,S,P)$ is unrestricted if all productions are of the form

 $u \rightarrow v$

where $u \in (V \cup T)^+$ and $v \in (V \cup T)^*$ Example:

Let $G=(\{S,A,X\},\{a,b\},S,P), P=$

 $S \rightarrow bAa aX$ $bAa \rightarrow abA$ $AX \rightarrow \lambda$

Example Find an unrestricted grammar G s.t. $L(G)=\{a^nb^nc^n|n>0\}$ $G=(V,T,S,P)$ $V = \{S, A, B, D, E, X\}$ $T=\{a,b,c\}$ $P=$

$$
\begin{array}{c}1) \, \, {\rm S} \rightarrow {\rm AX} \\ {\rm 2) \, \, A \rightarrow aAbc} \\ {\rm 3) \, \, A \rightarrow aBbc} \\ {\rm 4) \, \, Bb \rightarrow bB} \\ {\rm 5) \, \, Bc \rightarrow D} \\ {\rm 6) \, \, Dc \rightarrow cD} \\ {\rm 7) \, \, Db \rightarrow bD} \\ {\rm 8) \, \, DX \rightarrow EXc}\end{array}
$$

$S \Rightarrow AX \Rightarrow aAbcX \Rightarrow aAbcbcX \Rightarrow$ aaaBbcbcbcX

Theorem If G is an unrestricted grammar, then $L(G)$ is recursively enumerable.

Proof:

• List all strings that can be derived in one step.

List all strings that can be derived in two steps.

Theorem If L is recursively enumerable, then there exists an unrestricted grammar G such that $L=L(G).$

Proof:

• L is recursively enumerable. \Rightarrow there exists a TM M such that $L(M)=L$. $\mathbf{M}\,=\, (Q, \Sigma, \Gamma, \delta, q_0, B, F)$ q_0w ∗ $\vdash x_1q_f x_2 \textbf{ for some } q_f \in \hspace{-0.03cm} \mathbf{F},$ $x_1, x_2 \in \Gamma^*$ Construct an unrestricted grammar G s.t. $L(G)=L(M)$.

$$
S \overset{*}{\Rightarrow} w
$$

Three steps

1. $S \overset{*}{\Rightarrow} B \ldots B \# xq_f yB \ldots B$

- 2. $B \dots B \# xq_f yB \dots B \stackrel{*}{\Rightarrow}$ $B \dots B \# q_0 w B \dots B$
- 3. $B \dots B \# q_0 w B \dots B \overset{*}{\Rightarrow} w$

Definition A grammar G is context-sensitive if all productions are of the form

 $x \rightarrow y$

where $x, y \in (V \cup T)^+$ and $|x| \le |y|$

Definition L is context-sensitive (CSL) if there exists a context-sensitive grammar G such that $L=L(G)$ or $L=L(G) \cup \{\lambda\}.$

Theorem For every CSL L not including λ , \exists an LBA M s.t. $L=L(M).$

Theorem If L is accepted by an LBA M, then \exists CSG G s.t. $L(M)=L(G)$.

Theorem Every context-sensitive language L is recursive.

Theorem There exists a recursive language that is not CSL.