CompSci 334 Fall 2024, 9/12/24

Section: Properties of Regular Languages

Example $L = \{a^n b a^n \mid n > 0\}$ Motregular. $abaa abaa, \dots, \xi$ $abaa \in L$ No Can you build a DEA in R or regetter.

Closure Properties

A set is closed over an operation if

 $\begin{array}{l} \mathbf{L}_1,\,\mathbf{L}_2\in\mathbf{class}\\ \mathbf{L}_1\,\,\mathbf{op}\,\,\mathbf{L}_2=\mathbf{L}_3\\ \Rightarrow\,\mathbf{L}_3\in\mathbf{class} \end{array}$

 $L = \{x \mid x \text{ is a positive even integer}\}$ L is closed under

> addition? yes multiplication? yes subtraction? No 6-10 = -4division? No

Closure of Regular Languages

Theorem 4.1 If L_1 and L_2 are regular languages, then

 $\begin{array}{l} \mathbf{L}_1 \cup \mathbf{L}_2 \\ \mathbf{L}_1 \cap \mathbf{L}_2 \\ \mathbf{L}_1 \mathbf{L}_2 \\ \bar{L}_1 \\ \mathbf{L}_1^* \end{array}$

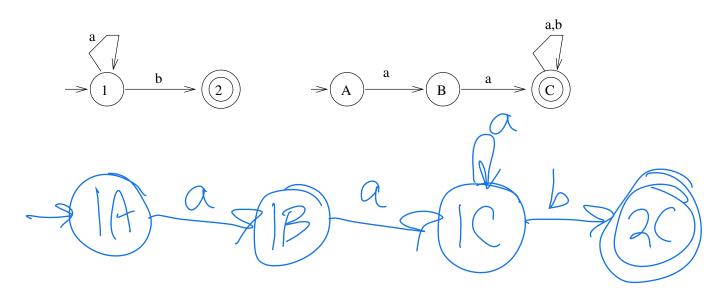
are regular languages.

Proof(sketch)

complementation: L_1 is reg. lang. $\Rightarrow \exists$ DFA M s.t. $L_1 = L(M)$ Construct M' s.t. *final states in M Gre nonfinal states in M Are nonfinal states in M Are final states in M dre final states in M* intersection:

 L_1 and L_2 are reg. lang. $\Rightarrow \exists$ DFA M_1 and M_2 s.t. $L_1 = L(M_1)$ and $L_2 = L(M_2)$ $\mathbf{M}_1 = (\mathbf{Q}, \Sigma, \delta_1, q_0, \mathbf{F}_1)$ $M_2 = (P, \Sigma, \delta_2, p_0, F_2)$ Construct M'=(Q', Σ , δ ', (q_0 , p_0), F') $\mathbf{Q}' = \bigcirc \checkmark \not\vdash$ $\delta': \left(\begin{pmatrix} q_i & p_j \end{pmatrix}, a \end{pmatrix} = \left(q_{k}, p_{k} \right)$ if $S_{\Gamma}(q_{i}, a) = q_{\mathcal{X}} \in \mathcal{M}_{1}$ and $S_{\Gamma}(q_{i}, a) = p_{\mathcal{A}} \in \mathcal{M}_{2}$ $F = \overline{\xi(g_i, p_j)} \in \overline{Q'} | q_j \in F_j \text{ and } p \in \overline{E_j}$ show wel(Mi) = welinz > closed under intersection

Example:



Regular languages are closed under

reversal	\mathbf{L}^R
difference	\mathbf{L}_1 - \mathbf{L}_2
right quotient	L_1/L_2
homomorphism	h(L)

Right quotient Def: $\mathbf{L}_1/\mathbf{L}_2 = \{x | xy \in \mathbf{L}_1 \text{ for some } y \in \mathbf{L}_2\}$

Example:

 $L_1 = \{a^*b^* \cup b^*a^*\}$ $\mathbf{L}_{2} = \{ b^{n} | n \text{ is even, } n > 0 \}$ $\mathbf{L}_{1} / \mathbf{L}_{2} = \bigcap^{\mathsf{L}} \bigwedge^{\mathsf{L}}$

 $abb \in L_1/L_2^{2}$, abbb L_1/L_2

Theorem If L_1 and L_2 are regular, then L_1/L_2 is regular.

Proof (sketch)

 $\exists \mathbf{DFA} \mathbf{M} = (\mathbf{Q}, \Sigma, \delta, q_0, \mathbf{F}) \text{ s.t. } \mathbf{L}_1 = \mathbf{L}(\mathbf{M}).$

Construct DFA M'=($\mathbf{Q}, \Sigma, \delta, q_0, \mathbf{F'}$)

For each state i do

Make i the start state (representing \mathbf{L}_{i}) $\mathcal{L}_{i} \mathcal{L}_{i} \mathcal{L}_{j} \mathcal{L}_{i} \mathcal{L}_$

M U X6 a P O D O O D O O O

QED.

Homomorphism

Def. Let Σ, Γ be alphabets. A homomorphism is a function

 $h:\Sigma \to \Gamma^*$

Example:

$$\Sigma = \{a, b, c\}, \ \Gamma = \{0, 1\}$$

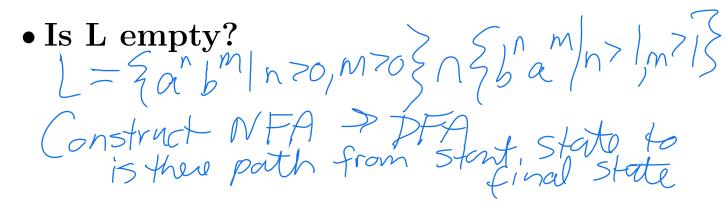
h(a)=11
h(b)=00
h(c)=0

h(bc) = 000

$$h(ab^*) = (())^*$$

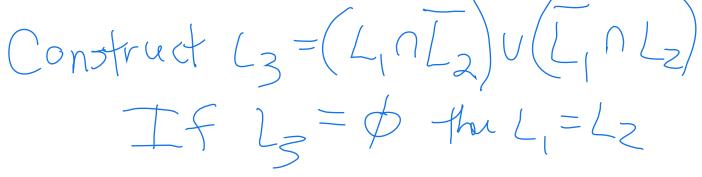
Questions about regular languages : L is a regular language.

• Given L, Σ , $w \in \Sigma^*$, is $w \in L$? Construct a DTA and test if it accepts W



• Is L infinite? Construct DFA is there a cycle? DFS should knows by: n state

• Does $L_1 = L_2$?



Identifying Nonregular Languages If a language L is finite, is L regular? If L is infinite, is L regular? Hapends

• $L_1 = \{a^n b^m | n > 0, m > 0\} = a d b b$ • $L_2 = \{a^n b^n | n > 0\}$ Not regular

Prove that $L_2 = \{a^n b^n | n > 0\}$ is ?

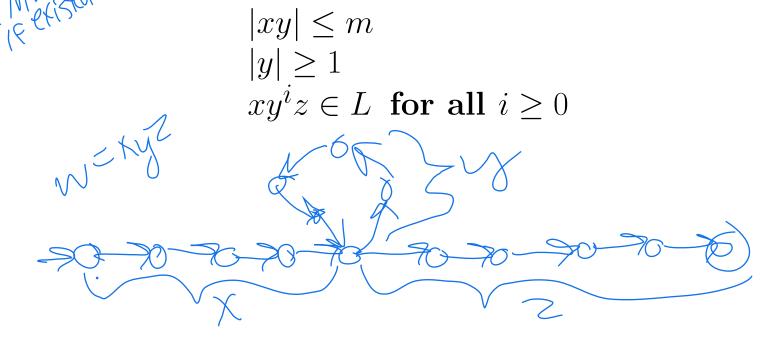
• Proof: Suppose L_2 is regular.

 $\Rightarrow \exists$ DFA M that recognizes L_2 M has finite no. of states, k states

Consider a long string a b KEL>

CA There must be a cycle in A (90 KOA 64n 5-(NC be result-13 there can't be reading 5 Contradiction

Pumping Lemma: Let L be an infinite regular language. \exists a constant m > 0 such that any $w \in L$ with $|w| \ge m$ can be decomposed into three parts as w = xyz with



To Use the Pumping Lemma to prove L is not regular:

- Proof by Contradiction.
 - Assume L is regular.
 - \Rightarrow L satisfies the pumping lemma.
 - Choose a long string w in L,

 $|w| \ge m$.

Show that there is NO division of winto xyz (must consider all possible divisions) such that $|xy| \le m$, $|y| \ge 1$ and $xy^i z \in \mathbf{L} \ \forall \ i \ge 0$.

The pumping lemma does not hold. Contradiction!

 \Rightarrow L is not regular. QED.

Example L= $\{a^n c b^n | n > 0\}$

L is not regular.

• Proof:

Assume L is regular.

 \Rightarrow the pumping lemma holds.

Choose $w = \mathcal{R}^{\wedge} \mathcal{A}$

xy = q = q = q = a = c = a y = q = a = a = c = a y = a = a = c = a y = xy = a = c = b = c y = xz = a = c = b = c y = xz = a = c = b = c y = xz = a = c = b = c y = xz = a = c = b = c y = xz = a = c = b = c y = xz = a = c = b = c y = xz = a = c = b = c y = xz = a = c = b = c y = xz = a = c = b = c y = xz = a = c = b = c y = xz = a = c = b = c y = xz = a = c = b = c y = xz = a = c = b = c z = xz = a = c = b = c

STOPPED HERE

Example L= $\{a^n b^{n+s} c^s | n, s > 0\}$

L is not regular.

Proof: Assume L is regular.
⇒ the pumping lemma holds. Choose w= So the partition is: Example $\Sigma = \{a, b\},$ $\mathbf{L} = \{w \in \Sigma^* \mid n_a(w) > n_b(w)\}$

- L is not regular.
 - Proof:
 - Assume L is regular.
 - \Rightarrow the pumping lemma holds.
 - Choose w =
 - So the partition is:

Example L= $\{a^3b^nc^{n-3}|n>3\}$ (shown in detail on handout) L is not regular. To Use Closure Properties to prove L is not regular:

- Proof Outline:
 - Assume L is regular.

Apply closure properties to L and other regular languages, constructing L' that you know is

not regular.

closure properties \Rightarrow L' is regular. Contradiction!

L is not regular. QED.

Example L= $\{a^{3}b^{n}c^{n-3}|n>3\}$

L is not regular.

Proof: (proof by contradiction) Assume L is regular.
Define a homomorphism h : Σ → Σ* h(a) = a h(b) = a h(c) = b h(L) = Example L= $\{a^n b^m a^m | m \ge 0, n \ge 0\}$ L is not regular.

• Proof: (proof by contradiction) Assume L is regular. Example: $L_1 = \{a^n b^n a^n | n > 0\}$ L_1 is not regular.