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Section: Properties of Regular
Languages
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Closure Properties
A set is closed over an operation if

L, Ly € class

Li op Ly = Ly
= L3 € class
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L={x | x is a positive even integer}

L is closed under

addition?
multiplicati(?fl?ﬁ/ \W é /
“lp =~

subtraction? nh,
division? f\p
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Closure of Regular Languages

Theorem 4.1 If L; and Ly are regular
languages, then

L U Lo
L; NLo
L;Lo
Ly

Lj

are regular languages.
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Proof(sketch)

L and Ly are regular languages
= d reg. expr. r; and ry s.t.
L1 — L(Tl) and LQIL(TQ)
r1+ r9 is r.e. denoting L{ U Lo
= closed under union
riro is r.e. denoting L{L»>
= closed under concatenation
r] is r.e. denoting L7
= closed under star-closure



complementation:
L, is reg. lang.
= 4 DFA M s.t. Lj = L(M)
Construct M’ s.t.
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intersection:
L, and L- are reg. lang.
= 34 DFA M; and M> s.t.
L1 — L(Ml) and LQ — L(MQ)

Mlz(Q927517 q0, Fl)
M2:(P727527 PO FQ)
Construct M’=(Q’,%,9’, (q0,p0), F’)
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Example:



rodge
Pencil

rodge
Pencil


Regular languages are closed under

reversal 1L
difference L{-Lo

right quotient L;/Ly
homomorphism h(L)



Right quotient

Def: L;/Ly = {z|zy €L for some
y €lo}

Example:

Li={a™b" Ub*a™}
Lo={b"|n is even, n > 0}

Li/Ly = Ut{b%
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Theorem If Ly and Lo are regular,
then L{/L> is regular.

Proof (sketch)

3 DFA M=(Q,%,6,q0,F) s.t. Ly =
L(M).

Construct DFA M’=(Q,>,0,qp,F’)

For each state 1 do

Make i the start state (representing L
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QED.
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Homomorphism

Def. Let >, be alphabets. A

homomorphism is a function

h:> - I'*

Example:

¥ ={a,b,c}, '={0,1}
h(a)=11
h(b)=00
h(c)=0

h(bc) = OO@

h(ab*) = ”@Gj\k
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Questions about regular languages :

L is a regular language.

e Given L, >, we X", is weL?
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e Is LL infinite?
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Identifying Nonregular Languages

If a language L is finite, is L regular?

If L is infinite, is L regular? } d¢pd/

o 1 ={a"b"n>0,m >0} = m%}gﬁ?
e Ly ={a"b"n > 0} NO/\ M%M@r
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Prove that Lo = {a""b"|n >0} is ?

e Proof: Suppose Lo is regular.
= 4 DFA M that recognizes L-

(\/\ has ‘?l\m‘ﬂ “0‘75_?%05ﬂ/ {i 5{/%4

Consily 0&\(_01167”3” 6@55}\/6[2
=)0 —0 - O— (O

W K

| 0
lé(?ké\‘k\e‘ \\ %@ CAR_
\/_\(\) A b \

N Thae must fe a Cuclo e 45

: o
@> P e
CWC/\Q % N 54’%,7? ;ii%wf‘

(2 (4/7\4, M 2%, "LL\A?’ J gf(\/ ’
TR i3 e a drqj\% ConTrad chon

4



rodge
Pencil

rodge
Pencil


J; Pumping Lemma: Let L be an
- infinite regular language. d a constant
m > 0 such that any w € L with

a/ lw| > m can be decomposed into three
parts as w = xyz with
Vﬁ%k

R zy| < m
y| > 1
xy'z € L for all i > 0
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To Use the Pumping Lemma to prove
L is not regular:

e Proof by Contradiction.
Assume L is regular.
= L satisfies the pumping lemma.

Choose a long string w in L,
lw| > m.

Show that there is NO division of w
into ryz (must consider all possible
divisions) such that |xy| < m, |y| > 1
and zy'z €L YV i > 0.

The pumping lemma does not hold.
Contradiction!

= L is not regular. QED.
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Example L={a"cb"|n > 0}

L is not regular.

e Proof:
Assume L is regular.
= the pumpmg lemma holds.

Choose w = @ Q. bm
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STOPPED HERE
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Example L={a"0""%c%|n,s > 0}

L is not regular.

e Proof:
Assume L is regular. é\%
Q
= the pumping lemma holds. er)
M M m MQ C
Choose w= (I b C =Ly O

So ghe partition is: |
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Example > = {a, b},
L={w € ¥* | ng(w) > ny(w)}

L is not regular.

e Proof:
Assume L is regular.
= the pumping lemma holds.

Choose w= /V\Jr }QM

So the partltlon is:
/7 ‘ 007
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Example L={a’0"¢"3|n > 3}
(shown in detail on handout)

L is not regular.
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To Use Closure Properties to prove L
is not regular:

¢ Proof Outline:
Assume L is regular.

Apply closure properties to L and
other regular languages,
constructing L’ that you know is
not regular.

closure properties = L’ is regular.
Contradiction!
L is not regular. QED.
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Example L={a’0"¢"3|n > 3}

L is not regular.

e Proof: (proof by contradiction)
Assume L is regular.
Define a homomorphism A : ¥ — 2*
h(a) =a h(b)=a h(c)=0b
h(L) =
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Example L={a"b""a""|/m > 0,n > 0}

L is not regular.

e Proof: (proof by contradiction)
Assume L is regular.
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Example: L; = {a"b"a"|n > 0}

L1 is not regular.
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