CompSci 334 Fall 2024 11/14/24

Section: Other Models of Turing Machines

Definition: Two automata are equivalent if they accept the same language.

Turing Machines with Stay Option Modify δ , $\zeta: Q \times \bigcap Q \times \bigcap X \not{\lbrace L, R, S \end{matrix}$

Theorem Class of standard TM's is equivalent to class of TM's with stay option.

Proof:

• (\Rightarrow): Given a standard TM M, then there exists a TM M' with stay option such that L(M)=L(M').

(⇐): Given a TM M with stay option, construct a standard TM M' such that L(M)=L(M').
M=(Q,Σ,Γ,δ,q_0,B,F)
M'=(Q' ξ,Γ', 5', q', β, ξ')
For each transition in M with a move (L or R) put the transition in M'. So, for

$$\delta(q_i, a) = (q_j, b, \mathbf{L} \text{ or } \mathbf{R})$$

put into $\delta'_{\{i, A\}} = (q'_{i}, b_{i} \mid o^{r} R)$ For each transition in M with S (stay-option), move right and move left. So for

$$\begin{aligned} & \delta(q_i, a) = (q_j, b, \mathbf{S}) \\ & \delta(q_j, a) = (q_j, a) \\ & \delta(q_j, a) \\ & \delta(q_j, a) = (q_j, a) \\ & \delta(q_j, a) \\ & \delta(q_j$$

Definition: A multiple track **TM** divides each cell of the tape into k cells, for some constant k.

A 3-track TM:

A multiple track TM starts with the input on the first track, all other tracks are blank.

 3^{+} $\delta: G \times \Gamma \times \Gamma \times \Lambda \longrightarrow Q \times \Lambda \times \Lambda \times \Lambda \times LR$

Theorem Class of standard TM's is equivalent to class of TM's with multiple tracks.

Proof: (sketch)

• (\Rightarrow): Given standard TM M there exists a TM M' with multiple tracks such that L(M)=L(M').

 (⇐): Given a TM M with multiple tracks there exists a standard TM M' such that L(M)=L(M').

Definition: A TM with a semi-infinite tape is a standard TM with a left boundary.

Theorem Class of standard TM's is equivalent to class of TM's with semi-infinite tapes.

Proof: (sketch)

(⇒): Given standard TM M there exists a TM M' with semi-infinite tape such that L(M)=L(M').
Given M, construct a 2-track semi-infinite TM M'

• (\Leftarrow): Given a TM M with semi-infinite tape there exists a standard TM M' such that L(M)=L(M'). Definition: An Multitape Turing Machine is a standard TM with multiple (a finite number) read/write tapes.

For an n-tape TM, define δ : $S: Q \times \Gamma \times \Gamma \to Q \times \Gamma \times \Gamma \times \Lambda \times \Lambda$

Theorem Class of Multitape TM's is equivalent to class of standard TM's. Proof: (sketch)

- (\Leftarrow): Given standard TM M, construct a multitape TM M' such that L(M)=L(M').
- (\Rightarrow): Given n-tape TM M construct a standard TM M' such that L(M)=L(M').

Zmultrack TM can be converted to

Definition: An Off-Line Turing Machine is a standard TM with 2 tapes: a read-only input tape and a read/write output tape.

Define $\delta: Q \times \Xi \times \Gamma \rightarrow Q \times \Gamma \times \Xi, R \subseteq X \subseteq L$ input tape

9

Theorem Class of standard TM's is equivalent to class of Off-line TM's. Jar 40 Similar 40 Similar 40

• (\Rightarrow): Given standard TM M there exists an off-line TM M' such that L(M)=L(M').

• (\Leftarrow): Given an off-line TM M there exists a standard TM M' such that L(M)=L(M').

Running Time of Turing Machines

Example:

Given $L = \{a^n b^n c^n | n > 0\}$. Given $w \in \Sigma^*$, is w in L? is w in L?

Write a 3-tape TM for this problem.

Definition: An Multidimensional-tape Turing Machine is a standard TM with a multidimensional tape

Theorem Class of standard TM's is equivalent to class of 2-dimensional-tape TM's.

Proof: (sketch)

- (\Rightarrow): Given standard TM M, construct a 2-dim-tape TM M' such that L(M)=L(M'). eqsignation gas from it
- (\Leftarrow): Given 2-dim tape TM M, construct a standard TM M' such that L(M)=L(M').

Construct M'

Pand then Pconvert Z-track TM to the standard TM, add -1,1 # 0#1 # b # # a С 1 |1| # |1| # $\mathbf{1} | \mathbf{\#} | \mathbf{1} | \mathbf{\#} |$ #1 1 1 # 1 Unavy 1'5 pos, O's neg never use & tomson The face the ful to have one move for the face the ful to have one move

Definition: A nondeterministic Turing machine is a standard TM in which the range of the transition function is a set of possible transitions. Define $\delta: Q \land [7 \longrightarrow 2]^{Q \land [1 \land \exists l, k \brack]}$

Theorem Class of deterministic TM's is equivalent to class of nondeterministic TM's.

Proof: (sketch)

- (\Rightarrow): Given deterministic TM M, construct a nondeterministic TM M' such that L(M)=L(M').
- (⇐): Given nondeterministic TM M, construct a deterministic TM M' such that L(M)=L(M').

Construct M' to be a 2-dim tape TM.

A step consists of making one move for each of the current machines. For example: Consider the following transition:

 $\delta(q_0, a) = \{(q_1, b, R), (q_2, a, L), (q_1, c, R)\}$

Being in state q_0 with input abc.

	#	#	#	#	#	
	#	a	b	С	#	
	#	q_0			#	
	#	#	#	#	#	
		•	•	•		

The one move has three choices, so 2 additional machines are started.

#	#	#	#	#	#	
#		\mathbf{b}	\mathbf{b}	С	#	
#			q_1		#	
#		a	b	С	#	
#	q_2				#	
 #		С	b	С	#	
#			q_1		#	
 #	#	#	#	#	#	

2-dim TM >> to a standard TM,

Definition: A 2-stack NPDA is an NPDA with 2 stacks.

stack 1

Define $\delta: QX \ge x [7u \le 2] \times [7u \le 2] = 44 b = 0 QX [7x]^*$

•

STOPPED HERE

Theorem Class of 2-stack NPDA's is equivalent to class of standard TM's. Proof: (sketch)

• (\Rightarrow): Given 2-stack NPDA, construct a 3-tape TM M' such that L(M)=L(M'). • (\Leftarrow): Given standard TM M, construct a 2-stack NPDA M' such that L(M)=L(M'). Universal TM - a programmable TM

• Input:

- -an encoded TM M
- -input string w

• Output:

–Simulate M on w

An encoding of a TM

Let TM $M = \{Q, \Sigma, \Gamma, \delta, q_1, B, F\}$

• $\mathbf{Q} = \{q_1, q_2, \dots, q_n\}$ Designate q_1 as the start state. Designate q_2 as the only final state. q_n will be encoded as n 1's

• Moves

L will be encoded by 1

R will be encoded by 11

• $\Gamma = \{a_1, a_2, \dots, a_m\}$ where a_1 will always represent the **B**. For example, consider the simple TM:

 $\Gamma = \{B,a,b\}$ which would be encoded as

The TM has 2 transitions,

 $\delta(q_1,\mathbf{a})=(q_1,\mathbf{a},\mathbf{R}), \quad \delta(q_1,\mathbf{b})=(q_2,\mathbf{a},\mathbf{L})$

which can be represented as 5-tuples:

 $(q_1, a, q_1, a, R), (q_1, b, q_2, a, L)$

Thus, the encoding of the TM is:

010110101101101011101101101010

For example, the encoding of the TM above with input string "aba" would be encoded as:

Question: Given $w \in \{0, 1\}^+$, is w the encoding of a TM?

Universal TM

The Universal TM (denoted M_U) is a 3-tape TM:

Program for M_U

- 1. Start with all input (encoding of TM and string w) on tape 1. Verify that it contains the encoding of a TM.
- **2.** Move input w to tape **2**
- 3. Initialize tape 3 to 1 (the initial state)
- 4. Repeat (simulate TM M)
 - (a) consult tape 2 and 3, (suppose current symbol on tape 2 is a and state on tape 3 is p)
 - (b) lookup the move (transition) on tape 1, (suppose $\delta(\mathbf{p},\mathbf{a})=(\mathbf{q},\mathbf{b},\mathbf{R})$.)
 - (c) apply the move
 - write on tape 2 (write b)
 - move on tape 2 (move right)
 - write new state on tape 3 (write q)

Observation: Every TM can be encoded as string of 0's and 1's.

Enumeration procedure - process to list all elements of a set in ordered fashion.

Definition: An infinite set is *countable* if its elements have 1-1 correspondence with the positive integers.

Examples:

- $S = \{ \text{ positive odd integers } \}$
- $S = \{ \text{ real numbers } \}$
- S = { $w \in \Sigma^+$ }, $\Sigma = \{a, b\}$
- $S = \{ TM's \}$
- $\bullet \, S = \{(i,j) \mid i,j{>}0, \, are \, \, integers\}$

Linear Bounded Automata

We place restrictions on the amount of tape we can use,

Definition: A linear bounded automaton (LBA) is a nondeterministic TM $M=(Q,\Sigma,\Gamma,\delta,q_0,B,F)$ such that $[,] \in \Sigma$ and the tape head cannot move out of the confines of []'s. Thus, $\delta(q_i,[) = (q_j,[,R), \text{ and } \delta(q_i,]) = (q_j,],L)$

Definition: Let M be a LBA. $L(M) = \{ w \in (\Sigma - \{[,]\})^* | q_0[w] \vdash [x_1q_fx_2] \}$

Example: $L = \{a^n b^n c^n | n > 0\}$ is accepted by some LBA