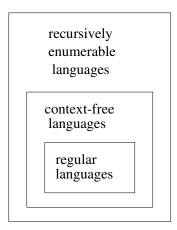
CompSci 334 - Mathematical Foundations of CS Dr. S. Rodger

Section: Recursively Enumerable Languages (handout)

Read Chapter 11 in Linz/Rodger.

Definition: A language L is recursively enumerable if there exists a TM M such that L=L(M).



Definition: A language L is *recursive* if there exists a TM M such that L=L(M) and M halts on every $w \in \Sigma^+$.

Enumeration procedure for recursive languages

To enumerate all $w \in \Sigma^+$ in a recursive language L:

- Let M be a TM that recognizes L, L = L(M).
- Construct 2-tape TM M'

Tape 1 will enumerate the strings in Σ^+

Tape 2 will enumerate the strings in L.

- On tape 1 generate the next string v in Σ^+
- simulate M on v

if M accepts v, then write v on tape 2.

Enumeration procedure for recursively enumerable languages

To enumerate all $w \in \Sigma^+$ in a recursively enumerable language L:

Repeat forever

- Generate next string (Suppose k strings have been generated: $w_1, w_2, ..., w_k$)
- Run M for one step on w_k

Run M for two steps on w_{k-1} .

...

Run M for k steps on w_1 .

If any of the strings are accepted then write them to tape 2.

Theorem Let S be an infinite countable set. Its powerset 2^S is not countable.

Proof - Diagonalization

• S is countable, so it's elements can be enumerated.

$$S = \{s_1, s_2, s_3, s_4, s_5, s_6 \ldots\}$$

An element $t \in 2^S$ can be represented by a sequence of 0's and 1's such that the *i*th position in *t* is 1 if s_i is in t, 0 if s_i is not in t.

Example, $\{s_2, s_3, s_5\}$ represented by

Example, set containing every other element from S, starting with s_1 is $\{s_1, s_3, s_5, s_7, \ldots\}$ represented by

Suppose 2^S countable. Then we can emunerate all its elements: $t_1, t_2, ...$

	s_1	s_2	s_3	s_4	s_5	s_6	s_7 .	
t_1	0		0		0	0	1	
t_2	1	1	0	0	1	1	0	
		0				0	0	
t_4	1	0	1	0	1	1	0	
t_5	1	1	1	1	1	1	1	
t_6	1	0	0	1	0	0	1	
t_7	0	1	0	1	0	0	0	

Theorem For any nonempty Σ , there exist languages that are not recursively enumerable.

Proof:

• A language is a subset of Σ^* . The set of all languages over Σ is

Theorem There exists a recursively enumerable language L such that \bar{L} is not recursively enumerable.

Proof:

• Let $\Sigma = \{a\}$ Enumerate all TM's over Σ :

	a	aa	aaa	aaaa	aaaaa	•••
$L(M_1)$	0	1	1	0	1	
$L(M_2)$	1	0	1	0	1	
$L(M_3)$	0	0	1	1	0	
$L(M_4)$	1	1	0	1	1	
$L(M_4)$ $L(M_5)$	0	0	0	1	0	

The next two theorems in conjunction with the previous theorem will show that there are some languages that are recursively enumerable, but not recursive.

Theorem If languages L and \bar{L} are both RE, then L is recursive.

Proof:

There exists an M₁ such that M₁ can enumerate all elements in L.
 There exists an M₂ such that M₂ can enumerate all elements in L̄.
 To determine if a string w is in L or not in L perform the following algorithm:

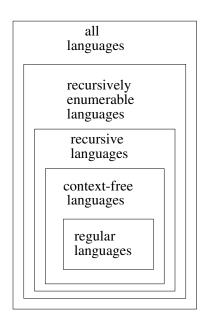
Theorem: If L is recursive, then \bar{L} is recursive.

Proof:

• L is recursive, then there exists a TM M such that M can determine if w is in L or w is not in L. M outputs a 1 if a string w is in L, and outputs a 0 if a string w is not in L.

Construct TM M' that does the following. M' first simulates TM M. If TM M halts with a 1, then M' erases the 1 and writes a 0. If TM M halts with a 0, then M' erases the 0 and writes a 1.

Hierarchy of Languages:



Definition A grammar G=(V,T,S,P) is *unrestricted* if all productions are of the form

 $u \to v$

where $u \in (V \cup T)^+$ and $v \in (V \cup T)^*$

Example:

Let $G = (\{S,A,X\},\{a,b\},S,P), P =$

 $\begin{array}{l} S \rightarrow bAaaX \\ bAa \rightarrow abA \\ AX \rightarrow \lambda \end{array}$

Example Find an unrestricted grammar G s.t. $L(G) = \{a^n b^n c^n | n > 0\}$

G=(V,T,S,P)

 $V = \{S,A,B,D,E,X\}$

 $T=\{a,b,c\}$

P=

- 1) $S \to AX$
- 2) $A \rightarrow aAbc$
- 3) $A \rightarrow aBbc$
- 4) $Bb \rightarrow bB$
- 5) Bc \rightarrow D
- 6) $Dc \rightarrow cD$
- 7) $Db \rightarrow bD$
- 8) DX \rightarrow EXc

There are some rules missing in the grammar.

To derive string anabbbccc, use productions 1,2 and 3 to generate a string that has the correct number of a's b's and c's. The a's will all be together, but the b's and c's will be intertwined.

 $S \Rightarrow AX \Rightarrow aAbcX \Rightarrow aaAbcbcX \Rightarrow aaaBbcbcbcX$

Theorem If G is an unrestricted grammar, then L(G) is recursively enumerable.

Proof:

• List all strings that can be derived in one step.

List all strings that can be derived in two steps.

Theorem If L is recursively enumerable, then there exists an unrestricted grammar G such that L=L(G).

Proof:

• L is recursively enumerable.

 \Rightarrow there exists a TM M such that L(M)=L.

$$\mathbf{M} = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$$

$$q_0w \stackrel{*}{\vdash} x_1q_fx_2$$
 for some $q_f \in \mathbb{F}, x_1, x_2 \in \Gamma^*$

Construct an unrestricted grammar G s.t. L(G)=L(M).

$$S \stackrel{*}{\Rightarrow} w$$

Three steps

- 1. $S \stackrel{*}{\Rightarrow} B \dots B \# x q_f y B \dots B$ with $x,y \in \Gamma^*$ for every possible combination
- 2. $B \dots B \# x q_f y B \dots B \stackrel{*}{\Rightarrow} B \dots B \# q_0 w B \dots B$
- 3. $B \dots B \# q_0 w B \dots B \stackrel{*}{\Rightarrow} w$

Definition A grammar	G is	$context\text{-}sensitive \ \text{if}$	all	productions	are	of the	${\rm form}$
-----------------------------	------	--	-----	-------------	-----	--------	--------------

$$x \to y$$

where $x, y \in (V \cup T)^+$ and $|x| \leq |y|$

Definition L is context-sensitive (CSL) if there exists a context-sensitive grammar G such that L=L(G) or L=L(G) $\cup \{\lambda\}$.

Theorem For every CSL L not including λ , \exists an LBA M s.t. L=L(M).

Theorem If L is accepted by an LBA M, then \exists CSG G s.t. L(M)=L(G).

Theorem Every context-sensitive language L is recursive.

Theorem There exists a recursive language that is not CSL.