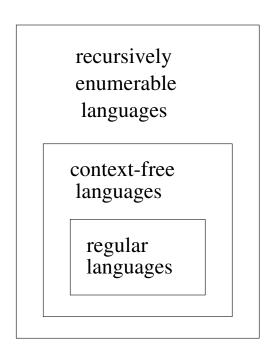
Section: Recursively Enumerable Languages

Definition: A language L is recursively enumerable if there exists a TM M such that L=L(M).



Definition: A language L is recursive if there exists a TM M such that L=L(M) and M halts on every $w \in \Sigma^+$.

To enumerate all $w \in \Sigma^+$ in a recursive language L:

- Let M be a TM that recognizes L, L = L(M).
- Construct 2-tape TM M'

 Tape 1 will enumerate the strings

in Σ^+

Tape 2 will enumerate the strings in L.

- -On tape 1 generate the next string v in Σ^+
- -simulate M on v if M accepts v, then write v on tape 2.

To enumerate all $\mathbf{w} \in \Sigma^+$ in a recursively enumerable language L: Repeat forever

- Generate next string (Suppose k strings have been generated: $w_1, w_2, ..., w_k$)
- Run M for one step on w_k Run M for two steps on w_{k-1} .

• • •

Run M for k steps on w_1 . If any of the strings are accepted then write them to tape 2. Theorem Let S be an infinite countable set. Its powerset 2^S is not countable.

Proof - Diagonalization

• S is countable, so it's elements can be enumerated.

$$S = \{s_1, s_2, s_3, s_4, s_5, s_6 ...\}$$

Example, $\{s_2, s_3, s_5\}$ represented by

Example, set containing every other element from S, starting with s_1 is $\{s_1, s_3, s_5, s_7, \ldots\}$ represented by

Suppose 2^S countable. Then we can emunerate all its elements: $t_1, t_2,$

	$ s_1 $	s_2	s_3	s_4	s_5	s_6	S7		• • •	
$\overline{t_1}$	0	1	0	1	0	0		1		• • •
t_2	1	1	0	0	1	1		0		• • •
t_3	0	0	0	0	1	0		0		• • •
t_4	1	0	1	0	1	1		0		• • •
t_5	1	1	1	1	1	1		1		• • •
t_6	1	0	0	1	0	0		1		• • •
t_7	0	1	0	1	0	0		0		• • •
• • •										

Theorem For any nonempty Σ , there exist languages that are not recursively enumerable.

Proof:

• A language is a subset of Σ^* . The set of all languages over Σ is Theorem There exists a recursively enumerable language L such that \bar{L} is not recursively enumerable.

Proof:

• Let $\Sigma = \{a\}$ Enumerate all TM's over Σ :

	\mathbf{a}	aa	aaa	aaaa	aaaaa	•••
$\overline{\mathbf{L}(M_1)}$			1	0	1	•••
$L(M_2)$	1	0	1	0	1	• • •
$L(M_3)$	0	0	1	1	0	•••
$L(M_4)$	1	1	0	1	1	• • •
$L(M_5)$	0	0	0	1	0	• • •
• • •						

Theorem If languages L and \bar{L} are both RE, then L is recursive.

Proof:

• $\exists M_1$ s.t. M_1 can enumerate all elements in L.

 $\exists M_2 \text{ s.t. } M_2 \text{ can enumerate all elements in } \bar{L}.$

To determine if a string w is in L or not in L

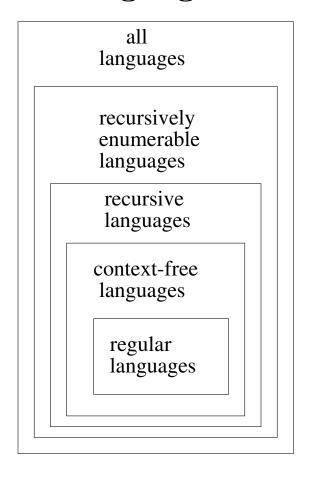
Theorem: If L is recursive, then \bar{L} is recursive.

Proof:

• L is recursive, then there exists a TM M such that M can determine if w is in L or w is not in L.

Construct TM M' that does the following. M' first simulates TM M.

Hierarchy of Languages:



Definition A grammar G=(V,T,S,P) is unrestricted if all productions are of the form

$$u \rightarrow v$$

where $u \in (\mathbf{V} \cup \mathbf{T})^+$ and $v \in (\mathbf{V} \cup \mathbf{T})^*$ Example:

Let
$$G = (\{S,A,X\},\{a,b\},S,P), P =$$

$$egin{aligned} \mathbf{S} &
ightarrow \mathbf{bAaaX} \ \mathbf{bAa} &
ightarrow \mathbf{abA} \ \mathbf{AX} &
ightarrow \lambda \end{aligned}$$

Example Find an unrestricted grammar G s.t. $L(G)=\{a^nb^nc^n|n>0\}$

$$G=(V,T,S,P)$$

$$V = \{S,A,B,D,E,X\}$$

$$T=\{a,b,c\}$$

$$P=$$

- $1) \,\, \mathbf{S} \, \rightarrow \, \mathbf{AX}$
- $2) A \rightarrow aAbc$
- 3) $A \rightarrow aBbc$
- 4) $\mathrm{Bb} \rightarrow \mathrm{bB}$
- 5) Bc \rightarrow D
- 6) $Dc \rightarrow cD$
- 7) $\mathrm{Db} \rightarrow \mathrm{bD}$
- 8) $DX \rightarrow EXc$

$$\begin{array}{c} S \Rightarrow AX \Rightarrow aAbcX \Rightarrow aaAbcbcX \Rightarrow \\ aaaBbcbcbcX \end{array}$$

Theorem If G is an unrestricted grammar, then L(G) is recursively enumerable.

Proof:

• List all strings that can be derived in one step.

List all strings that can be derived in two steps.

Theorem If L is recursively enumerable, then there exists an unrestricted grammar G such that L=L(G).

Proof:

• L is recursively enumerable.

 \Rightarrow there exists a TM M such that L(M)=L.

$$\mathbf{M} = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$$

$$q_0w \vdash x_1q_fx_2 \text{ for some } q_f \in \mathbf{F},$$

$$x_1, x_2 \in \Gamma^*$$

Construct an unrestricted grammar G s.t. L(G)=L(M).

$$S \stackrel{*}{\Rightarrow} w$$

Three steps

1.
$$S \stackrel{*}{\Rightarrow} B \dots B \# x q_f y B \dots B$$

2.
$$B \dots B \# x q_f y B \dots B \stackrel{*}{\Rightarrow} B \dots B \# q_0 w B \dots B$$

3.
$$B \dots B \# q_0 w B \dots B \stackrel{*}{\Rightarrow} w$$

Definition A grammar G is context-sensitive if all productions are of the form

$$x \to y$$

where $x, y \in (V \cup T)^+$ and $|x| \le |y|$

Definition L is context-sensitive (CSL) if there exists a context-sensitive grammar G such that L=L(G) or $L=L(G)\cup\{\lambda\}$.

Theorem For every CSL L not including λ , \exists an LBA M s.t. L=L(M).

Theorem If L is accepted by an LBA M, then \exists CSG G s.t. L(M)=L(G).

Theorem Every context-sensitive language L is recursive.

Theorem There exists a recursive language that is not CSL.