Section: Properties of Context-free Languages

Which of the following languages are CFL?

• **L**={
$$a^n b^n c^j \mid 0 < n \le j$$
}

• **L**={
$$a^nb^ja^nb^j \mid n > 0, j > 0$$
}

• **L**={
$$a^n b^j a^k b^p \mid n+j \le k+p, n>0, j>0, k>0, p>0$$
}

• **L**={
$$a^nb^ja^jb^n \mid n > 0, j > 0$$
}

Pumping Lemma for Regular Language's: Let L be a regular language, Then there is a constant m such that $w \in L$, $|w| \ge m$, w = xyz such that

- $\bullet |xy| \le m$
- $\bullet |y| \ge 1$
- for all $i \ge 0$, $xy^iz \in L$

Pumping Lemma for CFL's Let L be any infinite CFL. Then there is a constant m depending only on L, such that for every string w in L, with $|w| \ge m$, we may partition w = uvxyz such that:

 $|vxy| \le m$, (limit on size of substring) $|vy| \ge 1$, (v and y not both empty) For all $i \ge 0$, $uv^i x y^i z \in \mathbf{L}$

• Proof: (sketch) There is a CFG G s.t. L=L(G).

Consider the parse tree of a long string in L.

For any long string, some nonterminal N must appear twice in the path.

Example: Consider

 $L = \{a^nb^nc^n : n \ge 1\}$. Show L is not a CFL.

• Proof: (by contradiction)

Assume L is a CFL and apply the pumping lemma.

Let m be the constant in the pumping lemma and consider $w = a^m b^m c^m$. Note $|w| \ge m$.

Show there is no division of w into uvxyz such that $|vy| \ge 1$, $|vxy| \le m$, and $uv^ixy^iz \in \mathbf{L}$ for i = 0, 1, 2, ...

Thus, there is no breakdown of w into uvxyz such that $|vy| \ge 1$, $|vxy| \le m$ and for all $i \ge 0$, uv^ixy^iz is in L. Contradiction, thus, L is not a CFL. Q.E.D.

Example Why would we want to recognize a language of the type $\{a^nb^nc^n: n \geq 1\}$?

Example: Consider

 $L = \{a^n b^n c^p : p > n > 0\}$. Show L is not a CFL.

• Proof: Assume L is a CFL and apply the pumping lemma. Let m be the constant in the pumping lemma and consider

w =______ **Note** $|w| \ge m$.

Show there is no division of w into uvxyz such that $|vy| \ge 1$, $|vxy| \le m$, and $uv^ixy^iz \in \mathbf{L}$ for i = 0, 1, 2, ...

Example: Consider $L = \{a^j b^k : k = j^2\}$. Show L is not a CFL.

• Proof: Assume L is a CFL and apply the pumping lemma. Let m be the constant in the pumping lemma and consider

Show there is no division of w into uvxyz such that $|vy| \ge 1$, $|vxy| \le m$, and $uv^ixy^iz \in \mathbf{L}$ for i = 0, 1, 2, ...

Case 1: Neither v nor y can contain 2 or more distinct symbols. If v contains a's and b's, then $uv^2xy^2z\notin L$ since there will be b's before a's.

Thus, v and y can be only a's, and b's (not mixed).

Example: Consider

 $L = \{w\bar{w}w : w \in \Sigma^*\}, \ \Sigma = \{a,b\}, \ \text{where} \ \bar{w}$ is the string w with each occurrence of a replaced by b and each occurrence of b replaced by a. Show L is not a CFL.

• Proof: Assume L is a CFL and apply the pumping lemma. Let m be the constant in the pumping lemma and consider

Show there is no division of w into uvxyz such that $|vy| \ge 1$, $|vxy| \le m$, and $uv^ixy^iz \in \mathbf{L}$ for i = 0, 1, 2, ...

Example: Consider $L = \{a^n b^p b^p a^n\}$. L is a CFL. The pumping lemma should apply!

Let $m \ge 4$ be the constant in the pumping lemma. Consider $w = a^m b^m b^m a^m$.

We can break w into uvxyz, with:

Chap 8.2 Closure Properties of CFL's Theorem CFL's are closed under union, concatenation, and star-closure.

• Proof:

Given 2 CFG
$$G_1 = (V_1, T_1, S_1, P_1)$$
 and $G_2 = (V_2, T_2, S_2, P_2)$

- Union:

Construct
$$G_3$$
 s.t. $L(G_3) = L(G_1)$
 $\cup L(G_2)$.
 $G_3 = (V_3, T_3, S_3, P_3)$

- Concatenation:

Construct
$$G_3$$
 s.t. $L(G_3) = L(G_1) \circ L(G_2)$.
 $G_3 = (V_3, T_3, S_3, P_3)$

-Star-Closure

Construct
$$G_3$$
 s.t. $L(G_3) = L(G_1)^*$
 $G_3 = (V_3, T_3, S_3, P_3)$

Theorem CFL's are NOT closed under intersection and complementation.

- Proof:
 - Intersection:

- Complementation:

Theorem: CFL's are closed under regular intersection. If L_1 is CFL and L_2 is regular, then $L_1 \cap L_2$ is CFL.

• Proof: (sketch) We take a NPDA for L_1 and a DFA for L_2 and construct a NPDA for $L_1 \cap L_2$.

 $M_1 = (Q_1, \Sigma, \Gamma, \delta_1, q_0, z, F_1)$ is an NPDA such that $\mathbf{L}(M_1) = L_1$.

 $M_2 = (Q_2, \Sigma, \delta_2, q_0', F_2)$ is a DFA such that $\mathbf{L}(M_2) = L_2$.

Example of replacing arcs (NOT a Proof!):

We must formally define δ_3 . If

then

Must show

if and only if

Questions about CFL:

1. Decide if CFL is empty?

2. Decide if CFL is infinite?

Example: Consider

 $L = \{a^{2n}b^{2m}c^nd^m : n, m \ge 0\}$. Show L is not a CFL.

• Proof: Assume L is a CFL and apply the pumping lemma. Let m be the constant in the pumping lemma and consider $w = a^{2m}b^{2m}c^md^m$.

Show there is no division of w into uvxyz such that $|vy| \ge 1$, $|vxy| \le m$, and $uv^ixy^iz \in \mathbf{L}$ for i = 0, 1, 2, ...

Case 1: Neither v nor y can contain 2 or more distinct symbols. If v contains a's and b's, then $uv^2xy^2z\notin L$ since there will be b's before a's.

Thus, v and y can be only a's, b's, c's, or d's (not mixed).

Case 2: $v = a^{t_1}$, then $y = a^{t_2}$ or b^{t_3} $(|vxy| \le m)$

If $y = a^{t_2}$, then

 $uv^2xy^2z = a^{2m+t_1+t_2}b^{2m}c^md^m \notin L$ since $t_1 + t_2 > 0$, the number of a's is not twice the number of c's.

If $y = b^{t_3}$, then

 $uv^2xy^2z = a^{2m+t_1}b^{2m+t_3}c^md^m \notin L$ since $t_1 + t_3 > 0$, either the number of a's (denoted $\mathbf{n}(a)$) is not twice $\mathbf{n}(c)$ or $\mathbf{n}(b)$ is not twice $\mathbf{n}(d)$.

Case 3: $v = b^{t_1}$, then $y = b^{t_2}$ or c^{t_3}

If $y = b^{t_2}$, then

 $uv^{2}xy^{2}z = a^{2m}b^{2m+t_1+t_2}c^{m}d^{m} \notin L \text{ since}$ $t_1 + t_2 > 0, \mathbf{n}(b) > 2*\mathbf{n}(d).$

If $y = c^{t_3}$, then

 $uv^{2}xy^{2}z = a^{2m}b^{2m+t_{1}}c^{m+t_{3}}d^{m} \notin L \text{ since } t_{1}+t_{3}>0, \text{ either } \mathbf{n}(b)>2*\mathbf{n}(d) \text{ or } 2*\mathbf{n}(c)>\mathbf{n}(a).$

Case 4: $v = c^{t_1}$, then $y = c^{t_2}$ or d^{t_3}

If $y = c^{t_2}$, then

 $uv^2xy^2z = a^{2m}b^{2m}c^{m+t_1+t_2}d^m \notin L \text{ since } t_1+t_2>0, \ 2*\mathbf{n}(c)>\mathbf{n}(a).$

If $y = d^{t_3}$, then

 $uv^2xy^2z = a^{2m}b^{2m}c^{m+t_1}d^{m+t_3} \notin L \text{ since } t_1 + t_3 > 0, \text{ either } 2*\mathbf{n}(c)>\mathbf{n}(a) \text{ or } 2*\mathbf{n}(d)>\mathbf{n}(b).$

Case 5: $v = d^{t_1}$, then $y = d^{t_2}$ then $uv^2xy^2z = a^{2m}b^{2m}c^md^{m+t_1+t_2} \notin L$ since $t_1 + t_2 > 0$, 2*n(d)>n(c).

Thus, there is no breakdown of w into uvxyz such that $|vy| \ge 1$, $|vxy| \le m$ and for all $i \ge 0$, uv^ixy^iz is in L. Contradiction, thus, L is not a CFL. Q.E.D.