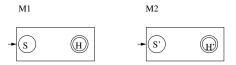
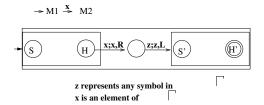
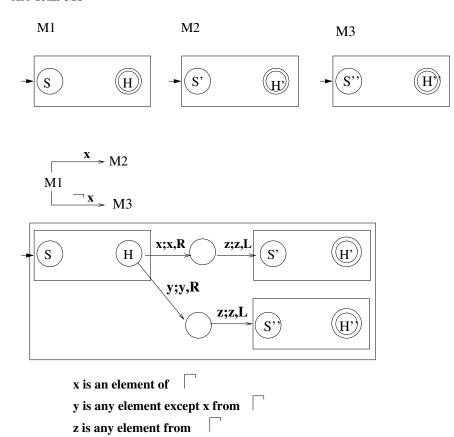

Compsci 334 - Mathematical Foundations of CS Dr. S. Rodger

Section: Turing Machines - Building Blocks (handout)


Combining Turing Machines


We will define notation that will make it easier to look at more complicated Turing machines

- 1. Given Turing Machines M1 and M2 Notation for
 - Run M1
 - Run M2



- 2. Given Turing Machines M1 and M2 Notation for
 - Run M1
 - If x is current symbol
 - then Run M2

- 3. Given Turing Machines M1, M2, and M3
 - Notation for
 - Run M1
 - If x is current symbol
 - then Run M2
 - else Run M3

More Notation for Simplifying Turing Machines

Suppose $\Gamma = \{a,b,c,B\}$

z is any symbol in Γ

x is a specific symbol from Γ

- 1. s start
- 2. R move right

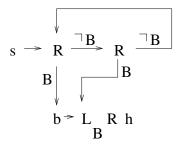
3. L - move left

4. x - write x (and don't move)

- 5. R_a move right until you see an a
- 6. L $_a$ move left until you see an a
- 7. $\mathbf{R}_{\neg a}$ move right until you see anything that is not an a
- 8. $L_{\neg a}$ move left until you see anything that is not an a

- 9. h halt in a final state
- 10. $\stackrel{a,b}{\rightarrow}$ $\stackrel{w}{\rightarrow}$

If the current symbol is a or b, let w represent the current symbol.


Example

Assume input string $w \in \Sigma^+$, $\Sigma = \{a, b\}$.

If |w| is odd, then write a b at the end of the string. The tape head should finish pointing at the leftmost symbol of w.

input: bab, output: babb

input: ba, output: ba

What is the running time?

Example

Assume input string $w \in \Sigma^+, \, \Sigma = \{a,b\}, \, |w| > 0$

For each a in the string, append a b to the end of the string.

input: abbabb, output: abbabbb

The tape head should finish pointing at the leftmost symbol of w.

Turing's Thesis Any computation that can be carried out by a mechanical means can be performed by a TM.

Definition: An *algorithm* for a function $f:D \to R$ is a TM M, which given input $d \in D$, halts with answer $f(d) \in R$.

Example: f(x+y) = x+y, x and y unary numbers.

start with: 111+1111

 \uparrow

end with: 1111111

1

Example: Copy a String, f(w)=w0w, w
∈ $\Sigma^*,\,\Sigma=\{a,b,c\}$

Denoted by C

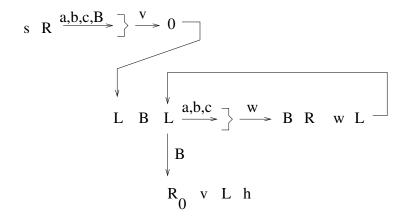
start with: abac

end with: abac0abac

 \uparrow

Algorithm:

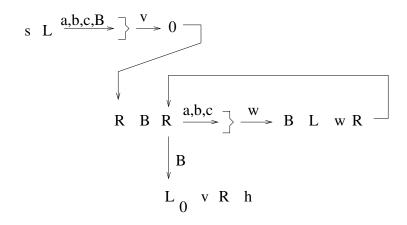
- \bullet Write a 0 at end of string
- For each symbol in string
 - make a copy of the symbol


Example: Shift the string that is to the left of the tape head to the right, denoted by S_R (shift right)

Below, "ba" is to the left of the tape head, so shift "ba" to the right.

start with: aaBbabca \uparrow end with: aaBBbaca

Algorithm:


- remember symbol to the right and erase it
- $\bullet\,$ for each symbol to the left do
 - shift the symbol one cell to the right
- replace first symbol erased
- move tape head to appropriate position

Example: Shift the string that is to the right of tape head to the left, denote by S_L (shift left)

start with: babcaBba
$$\uparrow$$
 end with: bacaBBba \uparrow

(similar to S_R)

Example: Add unary numbers

This time use shift.

Example: Multiply two unary numbers, f(x*y)=x*y, x and y unary numbers. Assume x,y>0.

start with: 1111*11

 \uparrow

end with: 11111111

 \uparrow