Section: Parsing Ch. 15

Parsing: Deciding if $x \in \Sigma^*$ is in L(G) for some CFG G.

Consider the CFG G:

$$egin{aligned} \mathbf{S} &
ightarrow \mathbf{Aa} \\ \mathbf{A} &
ightarrow \mathbf{AA} & \mathbf{ABa} & \lambda \\ \mathbf{B} &
ightarrow \mathbf{BBa} & \mathbf{b} & \lambda \end{aligned}$$

Is ba in L(G)? Running time?

New grammar G' is:

$$egin{aligned} \mathbf{S} &
ightarrow \mathbf{A} \mathbf{a} \mid \mathbf{a} \ \mathbf{A} &
ightarrow \mathbf{A} \mathbf{A} \mid \mathbf{A} \mathbf{B} \mathbf{a} \mid \mathbf{A} \mathbf{a} \mid \mathbf{B} \mathbf{a} \mid \mathbf{a} \ \mathbf{B} &
ightarrow \mathbf{B} \mathbf{B} \mathbf{a} \mid \mathbf{B} \mathbf{a} \mid \mathbf{a} \mid \mathbf{b} \end{aligned}$$

Is ba in L(G)? Running time?

Top-down Parser:

• Start with S and try to derive the string.

$$S \to aS \mid b$$

• Examples: LL Parser, Recursive Descent

Bottom-up Parser:

• Start with string, work backwards, and try to derive S.

• Examples: Shift-reduce, Operator-Precedence, LR Parser

The function FIRST:

 $egin{aligned} \mathbf{G} &= & (\mathbf{V}, \mathbf{T}, \mathbf{S}, \mathbf{P}) \ \mathbf{w}, \mathbf{v} \in & (\mathbf{V} \cup \mathbf{T})^* \ \mathbf{a} \in & \mathbf{T} \ \mathbf{X}, \mathbf{A}, \mathbf{B} \in & \mathbf{V} \ \mathbf{X}_I \in & (\mathbf{V} \cup \mathbf{T})^+ \end{aligned}$

Definition: FIRST

Given a context-free grammar $G = (V, T, S, P), a \in T \text{ and } w, v \in (V \cup T)^*,$ the FIRST(w) is the set of terminals that can be the first terminal a in $w \stackrel{*}{\Rightarrow} av$. λ is in FIRST(w) if $w \stackrel{*}{\Rightarrow} \lambda$.

We show how to calculate FIRST for variables and terminals in the grammar, for λ and for strings.

Algorithm for FIRST

Given a grammar G=(V, T, S, P), calculate FIRST(w) for w in $(V \cup T)^*$,

- **1. For** $a \in T$, $FIRST(a) = \{a\}$.
- 2. FIRST(λ) = { λ }.
- 3. For $A \in V$, set FIRST $(A) = \{\}$.
- 4. Repeat these steps until no more terminals or λ can be added to any FIRST set for variables.

For every production $A \to w$ FIRST $(A) = \text{FIRST}(A) \cup \text{FIRST}(w)$

```
5. For w = x_1 x_2 x_3 \dots x_n where x_i \in (V \cup T)

a) FIRST(w) = FIRST(x_1)
b)

For i from 2 to n do:
if x_j \stackrel{*}{\Rightarrow} \lambda for all j from 1 to i-1 then
FIRST(w) = FIRST(w) \cup FIRST(x_i) - \{\lambda\}
c)
If x_i \stackrel{*}{\Rightarrow} \lambda for all i from 1 to n then
FIRST(w) = FIRST(w) \cup \{\lambda\}
```

Example:

$$egin{aligned} \mathbf{S} & \mathbf{a}\mathbf{S}\mathbf{c} & \mid \mathbf{B} \\ \mathbf{B} & \mathbf{b} & \mid \lambda \end{aligned}$$

Example

$$egin{aligned} \mathbf{S} &
ightarrow \mathbf{BCD} \mid \mathbf{aD} \ \mathbf{A} &
ightarrow \mathbf{CEB} \mid \mathbf{aA} \ \mathbf{B} &
ightarrow \mathbf{b} \mid \lambda \ \mathbf{C} &
ightarrow \mathbf{dB} \mid \lambda \ \mathbf{D} &
ightarrow \mathbf{cA} \mid \lambda \ \mathbf{E} &
ightarrow \mathbf{e} \mid \mathbf{fE} \end{aligned}$$

$$FIRST(S) =$$
 $FIRST(A) =$
 $FIRST(B) =$
 $FIRST(C) =$
 $FIRST(D) =$
 $FIRST(E) =$

Definition: FOLLOW

Given a context-free grammar G = (V, T, S, P), $A \in V$, $a \in T$ and $w, v \in (V \cup T)^*$, FOLLOW(A) is the set of terminals that can be the first terminal a immediately following A in some sentential form vAaw. \$ is always in FOLLOW(S).

Algorithm for FOLLOW

To calculate FOLLOW for the variables in G=(V,T,S,P). Let $A,B \in V$ and $v,w \in (V \cup T)^*$.

- 1. \$ is in FOLLOW(S).
- 2. For $A \rightarrow vB$, FOLLOW(A) is in FOLLOW(B).
- 3. For $A \rightarrow vBw$:
 - (a) $FIRST(w) \{\lambda\}$ is in FOLLOW(B).
 - (b) If $\lambda \in FIRST(w)$, then FOLLOW(A) is in FOLLOW(B).

Example:

$$egin{aligned} \mathbf{S} &
ightarrow \mathbf{aSc} & \mid \mathbf{B} \\ \mathbf{B} &
ightarrow \mathbf{b} & \mid \lambda \end{aligned}$$

$$FOLLOW(S) =$$
 $FOLLOW(B) =$

Example:

$$egin{aligned} \mathbf{S} &
ightarrow \mathbf{BCD} \mid \mathbf{aD} \ \mathbf{A} &
ightarrow \mathbf{CEB} \mid \mathbf{aA} \ \mathbf{B} &
ightarrow \mathbf{b} \mid \lambda \ \mathbf{C} &
ightarrow \mathbf{dB} \mid \lambda \ \mathbf{D} &
ightarrow \mathbf{cA} \mid \lambda \ \mathbf{E} &
ightarrow \mathbf{e} \mid \mathbf{fE} \end{aligned}$$

$$FOLLOW(S) =$$
 $FOLLOW(A) =$
 $FOLLOW(B) =$
 $FOLLOW(C) =$
 $FOLLOW(D) =$
 $FOLLOW(E) =$