Section: Regular Languages

Regular Expressions

Method to represent strings in a language

+ union (or)

- concatenation (AND) (can omit)
- ∗ star-closure (repeat 0 or more times)

Example:

$$
(a+b)^* \circ a \circ (a+b)^*
$$

Example:

 $(aa)^*$

Definition Given Σ ,

- 1. \emptyset , λ , $a \in \Sigma$ are R.E.
- 2. If r and s are R.E. then
	- \bullet r+s is R.E.
	- rs is R.E.
	- \bullet (r) is a R.E.
	- r^* is R.E.
- 3. r is a R.E. iff it can be derived from (1) with a finite number of applications of (2).

Definition: $L(r) =$ language denoted by R.E. r.

1. \emptyset , $\{\lambda\}$, $\{a\}$ are L denoted by a R.E. 2. if r and s are R.E. then

(a)
$$
L(r+s) = L(r) \cup L(s)
$$
\n(b) $L(rs) = L(r) \circ L(s)$ \n(c) $L((r)) = L(r)$ \n(d) $L((r)^*) = (L(r)^*)$

Precedence Rules

∗ highest

 \circ

 $+$

Example:

 $ab^* + c =$

Examples:

- 1. $\Sigma = \{a, b\}$, $\{w \in \Sigma^* \mid w$ has an odd number of a 's followed by an even number of b 's $\}$.
- 2. $\Sigma = \{a, b\}$, $\{w \in \Sigma^* \mid w \text{ has no more}\}$ than 3 a 's and must end in ab .
- 3. Regular expression for all integers (including negative)

Section 3.2 Equivalence of DFA and R.E.

Theorem Let r be a R.E. Then ∃ NFA M s.t. $L(M) = L(r)$.

• Proof:

 \emptyset

- $\{\lambda\}$
- ${a}$

Suppose r and s are R.E.

$$
1.\;r + s
$$

- $2. r_{os}$
- 3. r[∗]

Example

 $ab^* + c$

Theorem Let L be regular. Then ∃ R.E. r s.t. $L=L(r)$.

Proof Idea: remove states sucessively until two states left

- Proof:
	- L is regular

⇒ ∃

1. Assume M has one final state and $q_0 \notin F$

2. Convert to a generalized transition graph (GTG), all possible edges are present. If no edge, label with Let r_{ij} stand for label of the edge from q_i to q_j

3. If the GTG has only two states, then it has the following form:

In this case the regular expression is:

 $r=(r_{ii}^*r_{ij}r_{jj}^*r_{ji})^*r_{ii}^*r_{ij}r_{jj}^*$ $\dot{j}\dot{j}$ 4. If the GTG has three states then it must have the following form:

5. If the GTG has four or more states, pick a state q_k to be removed (not initial or final state).

For all $o \neq k, p \neq k$ use the rule r_{op} replaced with $r_{op} + r_{ok} r_{kk}^* r_{kp}$ with different values of o and p.

When done, remove q_k and all its edges. Continue eliminating states until only two states are left. Finish with step 3.

6. In each step, simplify the regular expressions r and s with:

$$
r + r = r
$$

\n
$$
s + r * s =
$$

\n
$$
r + \emptyset =
$$

\n
$$
r\emptyset =
$$

\n
$$
\emptyset^* =
$$

\n
$$
r\lambda =
$$

\n
$$
(\lambda + r)^* =
$$

\n
$$
(\lambda + r)r^* =
$$

and similar rules.

Example:

Grammar $G=(V,T,S,P)$

- V variables (nonterminals)
- T terminals
- S start symbol
- P productions

Right-linear grammar:

all productions of form $A \rightarrow xB$ $A \rightarrow x$ where $A,B \in V, x \in T^*$

Left-linear grammar:

all productions of form $A \rightarrow Bx$ $\mathbf{A} \rightarrow \mathbf{x}$ where $A,B \in V, x \in T^*$

Definition:

A regular grammar is a right-linear or left-linear grammar.

Example 1:

$$
G{=}(\{S\},\{a,b\},S,P),\ P{=}\\\S\to abS\\S\to\lambda\\S\to Sab
$$

Example 2:

$$
\mathrm{G}{=}(\{\mathrm{S},\mathrm{B}\},\{\mathrm{a},\mathrm{b}\},\mathrm{S},\mathrm{P}),~\mathrm{P}{=}\\ \mathrm{S} \to \mathrm{a}\mathrm{B} \mid \mathrm{b}\mathrm{S} \mid \lambda \\ \mathrm{B} \to \mathrm{a}\mathrm{S} \mid \mathrm{b}\mathrm{B}
$$

Theorem: L is a regular language iff ∃ regular grammar G s.t. L=L(G).

Outline of proof:

\n- (←) Given a regular grammar G Construct NFA M
\n- Show L(G)=L(M)
\n- (⇒) Given a regular language
\n- $$
\exists
$$
 DFA M s.t. L=L(M)
\n- Construct reg. grammar G
\n- Show L(G) = L(M)
\n

Proof of Theorem:

 (\Leftarrow) Given a regular grammar G $G=(V,T,S,P)$ ${\bf V}\text{=}\{V_0, V_1, \ldots, V_y\}$ $\mathbf{T}=\}v_o,v_1,\ldots,v_z\}$ $S=V_0$ Assume G is right-linear (see book for left-linear case). Construct NFA M s.t. $L(G)=L(M)$ $\bf{If}\,\,w{\in}L(\bf{G}),\,\,w{=}v_1v_2\ldots v_k$

$\mathbf{M}{=}(\mathbf{V}{\cup}\{V_{f}\},\mathbf{T}{,}\delta{,}V_{0}{,}\{V_{f}\})$ V_0 is the start (initial) state For each production, $V_i \rightarrow a V_j$,

For each production, $V_i \rightarrow a$,

Show $L(G)=L(M)$ Thus, given R.G. G, $L(G)$ is regular

$$
(\implies) \text{ Given a regular language } L
$$

\n∃ DFA M s.t. L=L(M)
\nM=(Q,Σ,δ,q₀, F)
\nQ= {q₀, q₁,..., q_n}
\nΣ = {a₁, a₂,..., a_m}
\nConstruct R.G. G s.t. L(G) = L(M
\nG=(Q,Σ,q₀,P)
\nif δ(q_i, a_j)=q_k then

if $q_k \in \mathbf{F}$ then

Show $w \in L(M) \iff w \in L(G)$ Thus, $L(G)=L(M)$. QED.

Example

$$
\mathrm{G}{=}(\{\mathrm{S},\mathrm{B}\},\{\mathrm{a},\mathrm{b}\},\mathrm{S},\mathrm{P}),~\mathrm{P}{=}\\ \mathrm{S} \to \mathrm{a}\mathrm{B} \mid \mathrm{b}\mathrm{S} \mid \lambda \\ \mathrm{B} \to \mathrm{a}\mathrm{S} \mid \mathrm{b}\mathrm{B}
$$

Example:

