
Section: Regular Languages

Regular Expressions

Method to represent strings in a
language

+ union (or)
◦ concatenation (AND) (can omit)
∗ star-closure (repeat 0 or more times)

Example:

(a + b)∗ ◦ a ◦ (a + b)∗

Example:

(aa)∗

1

Definition Given Σ,

1. ∅, λ, a ∈ Σ are R.E.

2. If r and s are R.E. then

• r+s is R.E.

• rs is R.E.

• (r) is a R.E.

• r∗ is R.E.

3. r is a R.E. iff it can be derived from
(1) with a finite number of
applications of (2).

2

Definition: L(r) = language denoted
by R.E. r.

1. ∅, {λ}, {a} are L denoted by a R.E.

2. if r and s are R.E. then

(a) L(r+s) = L(r) ∪ L(s)

(b) L(rs) = L(r) ◦ L(s)

(c) L((r)) = L(r)

(d) L((r)∗) = (L(r)∗)

3

Precedence Rules

∗ highest
◦
+

Example:

ab∗ + c =

4

Examples:

1. Σ = {a, b}, {w ∈ Σ∗ | w has an odd
number of a’s followed by an even
number of b’s}.

2. Σ = {a, b}, {w ∈ Σ∗ | w has no more
than 3 a’s and must end in ab}.

3. Regular expression for all integers
(including negative)

5

Section 3.2 Equivalence of DFA and
R.E.

Theorem Let r be a R.E. Then ∃ NFA
M s.t. L(M) = L(r).

• Proof:

∅
{λ}
{a}
Suppose r and s are R.E.

1. r+s

2. r◦s
3. r∗

6

Example

ab∗ + c

7

Theorem Let L be regular. Then ∃
R.E. r s.t. L=L(r).

Proof Idea: remove states sucessively
until two states left

• Proof:

L is regular

⇒ ∃

1. Assume M has one final state
and q0 ̸∈ F

2. Convert to a generalized
transition graph (GTG), all
possible edges are present.

If no edge, label with

Let rij stand for label of the edge
from qi to qj

8

3. If the GTG has only two states,
then it has the following form:

rjj

ijr

jir
iir

jqiq

In this case the regular expression
is:

r = (r∗iirijr
∗
jjrji)

∗r∗iirijr
∗
jj

9

4. If the GTG has three states then
it must have the following form:

r

r

jjr

rkk

rik

rki

r

rjk

kj

ij

ji

qk

ii

qi qj

r

10

REPLACE WITH
rii rii + rikr

∗
kkrki

rjj rjj + rjkr
∗
kkrkj

rij rij + rikr
∗
kkrkj

rji rji + rjkr
∗
kkrki

remove state qk

11

5. If the GTG has four or more
states, pick a state qk to be
removed (not initial or final state).

For all o ̸= k, p ̸= k use the rule

rop replaced with rop + rokr
∗
kkrkp

with different values of o and p.

When done, remove qk and all its
edges. Continue eliminating states
until only two states are left. Finish
with step 3.

12

6. In each step, simplify the regular
expressions r and s with:

r + r = r
s + r∗s =
r + ∅ =
r∅ =
∅∗ =
rλ =
(λ + r)∗ =
(λ + r)r∗ =

and similar rules.

13

Example:

q0 q2

q1

a

a

b
b

b

a

14

Grammar G=(V,T,S,P)

V variables (nonterminals)
T terminals
S start symbol
P productions

Right-linear grammar:

all productions of form
A → xB
A → x

where A,B ∈ V, x ∈ T∗

15

Left-linear grammar:

all productions of form
A → Bx
A → x

where A,B ∈ V, x ∈ T∗

Definition:

A regular grammar is a right-linear or
left-linear grammar.

16

Example 1:

G=({S},{a,b},S,P), P=
S → abS
S → λ
S → Sab

17

Example 2:

G=({S,B},{a,b},S,P), P=
S → aB | bS | λ
B → aS | bB

18

Theorem: L is a regular language iff ∃
regular grammar G s.t. L=L(G).

Outline of proof:

(⇐=) Given a regular grammar G
Construct NFA M
Show L(G)=L(M)

(=⇒) Given a regular language
∃ DFA M s.t. L=L(M)
Construct reg. grammar G
Show L(G) = L(M)

19

Proof of Theorem:

(⇐=) Given a regular grammar G
G=(V,T,S,P)

V={V0, V1, . . . , Vy}
T={vo, v1, . . . , vz}
S=V0

Assume G is right-linear
(see book for left-linear case).

Construct NFA M s.t. L(G)=L(M)
If w∈L(G), w=v1v2 . . . vk

20

M=(V∪{Vf},T,δ,V0,{Vf})
V0 is the start (initial) state
For each production, Vi → aVj,

For each production, Vi → a,

Show L(G)=L(M)
Thus, given R.G. G,

L(G) is regular

21

(=⇒) Given a regular language L
∃ DFA M s.t. L=L(M)

M=(Q,Σ,δ,q0, F)
Q={q0, q1, . . . , qn}
Σ = {a1, a2, . . . , am}

Construct R.G. G s.t. L(G) = L(M)
G=(Q,Σ,q0,P)
if δ(qi, aj)=qk then

if qk ∈F then

Show w ∈L(M) ⇐⇒ w ∈ L(G)
Thus, L(G)=L(M).

QED.

22

Example

G=({S,B},{a,b},S,P), P=
S → aB | bS | λ
B → aS | bB

23

Example:

a

a

b

q0 q1

24

