Section: Properties of Regular Languages

Example

$$L = \{a^n b a^n \mid n > 0\}$$

Closure Properties

A set is closed over an operation if

$$L_1, L_2 \in \mathbf{class}$$

 $L_1 \text{ op } L_2 = L_3$
 $\Rightarrow L_3 \in \mathbf{class}$

L={x | x is a positive even integer}
L is closed under

addition? multiplication? subtraction? division?

Closure of Regular Languages

Theorem 4.1 If L_1 and L_2 are regular languages, then

$$\mathbf{L}_1 \cup \mathbf{L}_2$$

$$\mathbf{L}_1 \cap \mathbf{L}_2$$

$$\mathbf{L}_1 \mathbf{L}_2$$

$$\bar{L}_1$$

$$\mathbf{L}_1^*$$

are regular languages.

Proof(sketch)

 \mathbf{L}_1 and \mathbf{L}_2 are regular languages $\Rightarrow \exists$ reg. expr. r_1 and r_2 s.t. $\mathbf{L}_1 = \mathbf{L}(r_1)$ and $\mathbf{L}_2 = \mathbf{L}(r_2)$ $r_1 + r_2$ is r.e. denoting $\mathbf{L}_1 \cup \mathbf{L}_2$ \Rightarrow closed under union r_1r_2 is r.e. denoting $\mathbf{L}_1\mathbf{L}_2$ \Rightarrow closed under concatenation r_1^* is r.e. denoting \mathbf{L}_1^* \Rightarrow closed under star-closure

complementation:

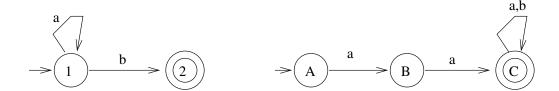
 L_1 is reg. lang. $\Rightarrow \exists$ DFA M s.t. $L_1 = L(M)$ Construct M' s.t.

intersection:

```
L<sub>1</sub> and L<sub>2</sub> are reg. lang.

\Rightarrow \exists \ \mathbf{DFA} \ \mathbf{M}_1 \ \mathbf{and} \ \mathbf{M}_2 \ \mathbf{s.t.}
\mathbf{L}_1 = \mathbf{L}(\mathbf{M}_1) \ \mathbf{and} \ \mathbf{L}_2 = \mathbf{L}(\mathbf{M}_2)
\mathbf{M}_1 = (\mathbf{Q}, \Sigma, \delta_1, \ q_0, \ \mathbf{F}_1)
\mathbf{M}_2 = (\mathbf{P}, \Sigma, \delta_2, \ p_0, \ \mathbf{F}_2)
\mathbf{Construct} \ \mathbf{M}' = (\mathbf{Q}', \Sigma, \delta', \ (q_0, p_0), \ \mathbf{F}')
\mathbf{Q}' = \delta'
```

Example:



Regular languages are closed under

reversal \mathbf{L}^R

difference L_1 - L_2

right quotient L_1/L_2

homomorphism h(L)

Right quotient

Def:
$$\mathbf{L}_1/\mathbf{L}_2 = \{x | xy \in \mathbf{L}_1 \text{ for some } y \in \mathbf{L}_2\}$$

Example:

$$L_1 = \{a^*b^* \cup b^*a^*\}$$

 $L_2 = \{b^n | n \text{ is even, } n > 0\}$
 $L_1/L_2 =$

Theorem If L_1 and L_2 are regular, then L_1/L_2 is regular.

Proof (sketch)

 \exists DFA M=(Q, Σ , δ , q_0 ,F) s.t. L₁ = L(M).

Construct DFA M'= $(\mathbf{Q}, \Sigma, \delta, q_0, \mathbf{F'})$

For each state i do Make i the start state (representing $\mathbf{L}_{i}^{'}$)

QED.

Homomorphism

Def. Let Σ, Γ be alphabets. A homomorphism is a function

$$\mathbf{h}:\Sigma \to \Gamma^*$$

Example:

$$\Sigma = \{a, b, c\}, \Gamma = \{0, 1\}$$
 $h(a)=11$
 $h(b)=00$
 $h(c)=0$

$$h(bc) =$$

$$h(ab^*) =$$

Questions about regular languages: L is a regular language.

• Given L, Σ , w $\in \Sigma^*$, is w \in L?

• Is L empty?

• Is L infinite?

• Does $L_1 = L_2$?

Identifying Nonregular Languages
If a language L is finite, is L regular?

If L is infinite, is L regular?

•
$$L_1 = \{a^n b^m | n > 0, m > 0\} =$$

$$\bullet L_2 = \{a^n b^n | n > 0\}$$

Prove that $L_2 = \{a^n b^n | n > 0\}$ **is** ?

- Proof: Suppose L_2 is regular.
 - $\Rightarrow \exists$ DFA M that recognizes L_2

Pumping Lemma: Let L be an infinite regular language. \exists a constant m>0 such that any $w\in L$ with $|w|\geq m$ can be decomposed into three parts as w=xyz with

$$|xy| \le m$$

$$|y| \ge 1$$

$$xy^{i}z \in L \text{ for all } i \ge 0$$

To Use the Pumping Lemma to prove L is not regular:

• Proof by Contradiction.

Assume L is regular.

 \Rightarrow L satisfies the pumping lemma.

Choose a long string w in L, $|w| \ge m$.

Show that there is NO division of w into xyz (must consider all possible divisions) such that $|xy| \le m$, $|y| \ge 1$ and $xy^iz \in L \ \forall \ i \ge 0$.

The pumping lemma does not hold. Contradiction!

 \Rightarrow L is not regular. QED.

Example L= $\{a^ncb^n|n>0\}$ L is not regular.

• Proof:

Assume L is regular.

 \Rightarrow the pumping lemma holds.

Choose w =

Example L= $\{a^nb^{n+s}c^s|n,s>0\}$ L is not regular.

• Proof:

Assume L is regular.

 \Rightarrow the pumping lemma holds.

Choose w =

So the partition is:

Example
$$\Sigma = \{a, b\}$$
,
 $\mathbf{L} = \{w \in \Sigma^* \mid n_a(w) > n_b(w)\}$

L is not regular.

• Proof:

Assume L is regular.

 \Rightarrow the pumping lemma holds.

Choose w =

So the partition is:

Example L= $\{a^3b^nc^{n-3}|n>3\}$ (shown in detail on handout) L is not regular. To Use Closure Properties to prove L is not regular:

• Proof Outline:

Assume L is regular.

Apply closure properties to L and other regular languages, constructing L' that you know is not regular.

closure properties \Rightarrow L' is regular.

Contradiction!

L is not regular. QED.

Example L= $\{a^3b^nc^{n-3}|n>3\}$ L is not regular.

• Proof: (proof by contradiction)
Assume L is regular.

Define a homomorphism $h: \Sigma \to \Sigma^*$

$$h(a) = a$$
 $h(b) = a$ $h(c) = b$
 $h(L) =$

Example L= $\{a^nb^ma^m|m \geq 0, n \geq 0\}$ L is not regular.

• Proof: (proof by contradiction)
Assume L is regular.

Example: $L_1 = \{a^n b^n a^n | n > 0\}$ L_1 is not regular.