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Analysis

1. Review of the Brin-Page model for Page-Ranking (distribution).

Let A ≥ 0 and B ≥ 0 be of the same size and column stochastic. Let C(β) =
βA+ (1− β)B ≥ 0 with the Bernoulli probability β ∈ (0, 1).

(a) [M/T/F]

Matrix C(β) is column stochastic, with ρ(C) = 1. If both A and B are
irreducible, then C(β) is irreducible; and vice versa.

Let B = beT with b > 0 and eTb = 1. Then, B is irreducible, so is C(β).

(b) Let B be specified as in the previous problem. Let xp = xp(b, β) be the
Perron-Frobeneous vector of C(β). Which one of the following is a correct
description or representation of xp, and make a correction if incorrect:

C(β)xp = xp (1)

xp = lim
k→∞

Ck(β)x0, x0 > 0, eTx0 = 1. (2)

(I − βA)xp = (1− β)b (3)

xp = (1− β)
∞∑
k=1

βkAkb (4)

(c) Find a way to prefix the distribution xp.

(d) Describe a simple iterative procedure in a finite number of steps to get an
approximate x̂p to xp.

(e) Provided a solution x̂p, suggest at least three criteria to assess the expected
properties and accuracy.

2. [M/T/F]

Use of the Neumann expansion for determining pair-wise reachability

Rn = I +A+A2 + · · ·+An−1 (5)

That is, i can be reached by j if and only if Rn(i, j) > 0.

Let α > 0 be a scalar so that α∥A∥ < 1. Then R(α) =
∑∞

k=0(αA)
k is well defined

as the series converges. Then R(α)(i, j) > 0 if and only if Rn(i, j) > 0.

Furthermore, R(α) can be computed as the inverse of I − αA.

Remark: the inverse can be obtained by an LU factorization in O(n3) operations, the same

order as one matrix-matrix product.

3. Provide a brief summary within 300 words on how to use a random-walk approach
for node-to-vertex encoding and embedding, discussion with teammates, classmates
and ChatGPT is encouraged.
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4. Review: what we know of the symmetric eigenvalue problem (as the base
for graph spectral analysis)

Let A be an n× n real-valued symmetric matrix, AH = AT = A. Let Axj = λjxj
be the eigen-pairs, λj ∈ C and 0 ̸= xj ∈ Cn×1.

(a) [M/T/F] λj ∈ R because xjHAxj = λjx
H
j xj

One can index the eigenvalues in non-descending order, λmin = λ1 ≤ λj ≤
λn = λmax.

(b) [M/T/F] Areal(xj) = λjreal(xj) and Aimag(xj) = λj imag(xj) therefore, the
eigenvectors of A can be made real-valued.

(c) Prove or disprove the following statement: If λi ̸= λj , then xTj xj = 0.

(d) [M/T/F] If the dimension of the invariant subspace of A associated with λj

is greater than 1. Assume Qj be the set of orthonormal vectors spanning the
subspace, then AQj = λjQj .

(e) Optional. [M/T/F] For every eigenvalue λj , its geometric multiplicity is equal
to its algebraic multiplicity. This implies that A has a complete eigenvector
system.

(f) [M/T/F] An EVD of A can be expressed as follows, A = QΛQT where Λ
diagonal and real-valued and Q is orthogonal.

(g) [M/T/F] ∥A∥2F =
∑

ij A
2(i, j) =

∑
j λ

2
j and ∥A∥2 = max{ |λmax|, |λmin| },

Consequently, ∥A∥2 = λmax if and only if A is semi-positive definite.

(h) [M/T/F] Assume in addition that A ≥ 0 elementwise, with d = Ae > 0.
Then the random-walk matrix Aw = AD−1 is symmetric if and only of d is
constant. Nonetheless, λj(Aw) ∈ R.

5. The normalized graph Laplacians to edge weighted graphs: spectral
structures & applications

Let G(V,E,E) be a graph with non-negative edge weights, where W is the weight
function, W : E → R+. Let A be the adjacency matrix (with edge weights). Let
B be the incidence matrix without edge weights. Define

Bw ≜ BD1/2
e , Lw ≜ BwB

T
w , De = diag(W ). (6)

All the Laplacians, above or below, are defined as the gram product of a weighted
incidence matrix.

(a) [M/T/F]

For any x, xTLwx ≥ 0, i.e., Lw is semi-positive definite, and Lwe = 0, i.e.,
Lw has zero eigenvalue(s), not positive definite.

(b) [M/T/F]

Lw = D −A, where A is the weighted adjacency matrix and D = diag(Ae).

(c) [M/T/F]

Graph G is connected if and only if the Fiedler value is positive. Consequently,
the Fiedler value of L (unweighted) is nonzero if and only if the Fiedler value
of Lw is nonzero0.
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(d) Let Bw = BD
1/2
e . Describe the vertex scaling matrix Dv so that B̂w =

D
−1/2
v BD

1/2
e is normalized in rows.

(e) [M/T/F]

Let L̂w = B̂wB̂
T
w . Then, L̂w = I − Â, where Â = D

−1/2
v AD

−1/2
v .

Furthermore, λj(Â) is real and within [−1.1].

(f) [M/T/F]

Let B+ be the incidence matrix with B(:, ℓ) = ei + ej for ℓ = (i, j) ∈ E. Let

B+,w = BD
1/2
e . Then, B̂+,w = D

−1/2
v BD

1/2
e is normalized in rows by the

same vertex scaling. Then, L̂+,w = I + Â, where L̂+,w is the Laplacian as the

gram product of B̂+,w.

(g) Give a brief interpretation of element L̂+(i, j) in terms of neighborhood sim-
ilarities.

(h) Verify (in brief expressions) the following equalities and inequalities

λj(Â) ∈ [−1.1], j = 1 : n

Â = Q Λ̂QT, Λ = diag(λj), QTQ = In

L̂w = Q(I − Λ̂)QT

L̂+,w = Q(I + Λ̂)QT

(7)

(i) [M/T/F]

Let G be connected. Let d = Ae be the degree vector. Then, d1/2 is the null
eigenvector of L̂w and the Perron vector of L̂+,w. The Fiedler vector of L̂ is

the eigenvector associated with the second largest eigenvalue of L̂+,w.

In any spectral approximation of graph G to preserve the neighborhood sim-
ilarity, it is necessary to preserve at least the two principle eigenvectors of
L̂+,w.

6. In data-driven, evidence-based research, a frequent issue is to identify a random
phenomenon and/or the deviation from it. List at least three types of random
graphs.

The following are to initiate more of mental and analytical exercise for class

projects.

7. Optional. Describe briefly the (matching) model used in isoMap for mapping graph
nodes to vectors in a metric space.

8. Optional. Describe briefly the (matching ) model used in t-SNE for a point cloud
in a high-dimensional space to a point cloud in 2D/3D space. Then use this model
to construct a graph.

9. Optional. Describe briefly approach extending the analysis of static graphs to
time-varying graphs.

10. Optional. Describe briefly how to measure the similarity between two neighborhood
in a digraph and how to extend the Laplacian spectral analysis of an undirected
graph to a digraph.
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