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1 Preliminary

1.1 Basic notions & notations

Let A ∈ Cn×n, n > 1.

◦ The Hermitian transpose of A is AH. A matrix is Hermitian if AH = A. A matrix

is (complex) symmetric if AT = A.

◦ An orthonormal matrix Un×k is composed of mutually orthogonal columns and each

column normalized to 1, i.e., eTi U
HUej = δij, 1 ≤ i, j ≤ k, or UHU = Ik. Here δij

is the Kronecker delta function. When k = n, matrix U is unitary if U ∈ Cn×n) or

orthogonal if U ∈ Rn×n.

◦ Two matrices Xn×k and Yn×k are bi-orthogonal in columns if eTi Y
HXej = δij,

1 ≤ i, j ≤ k, i.e., Y HX = Ik. When n = k, Y H = X−1.

1.2 Eigenvalue-eigenvector pairs

Axj = λjxj, xj ̸= 0, xj ∈ Cn×1, λj ∈ C, 1 ≤ j ≤ n (1)

◦ The spectrum: Λ(A) ≜ {λj} ⊂ C

◦ The spectral radius: ρ(A) ≜ max{ |λj| }

Verify that ρ(A) ≤ ∥A∥p for any p-norm, including in particular ∥·∥1 and ∥·∥∞,

which can be computationally and easily obtained.

One can follow the definitions and statements item by item with ease:

□ Any two eigenvectors associated with two distinct eigenvalues are linearly inde-

pendents.
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□ Let p be the number of distinct eigenvalues. Then, 1 ≤ p ≤ n, and the number

of linearly independent eigenvectors is no less than p and no greater than n.

□ (A− λjI)xj = 0, xj ̸= 0

=⇒ when shifted by an eigenvalue λj, the matrix A− λjI is singular

The geometric multiplicty of eigenvalue λj is the dimension of the null space of

A− λjI, i.e., mj,g ≜ dim(null(A− λjI))

□ The characteristic polynomial: χ(λ) ≜ det(λI − A)

χ(λ) is of degree n and has n roots.

χ(λj) = det(λjI − A) = 0.

Every eigenvalye λj is a root of χ(λ); every root of χ(λ) is an eigenvalue of A

=⇒ χ(λ) =
∏

j=1:n(λ− λj),

□ The algebraic multiplicity of λj: A has p distinct eigenvalues, 1 ≤ p ≤ n.

Then, χ(λ) =
∏

j=1:p(λ − λj)
mj where mj is the algebraic multiplicity of λj,∑

j mj = n.

□ The trace of A is the sum of the diagonal elements, which is readily obtainable.

The trace is also equal to the sum of the eigenvalues,

trace(A) ≜
∑
i=1:n

A(i, i) =
∑
j=1:p

mjλj.

□ Basic invariant properties of eigenvectors:

– Shifting: (A− µI)xj = (λj − µ)xj, µ ∈ C
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– Uniform scaling: (αA)xj = (αλj)xj, α ∈ C

– Polynomial of A: Akxj = λjxj =⇒ p(A)xj = p(λj)xj

□ Basic invariant properties of eigenvalues:

- Transposition: Λ(AT) = Λ(A)

( Verification: det(λjI −A) = det(λjI −AT) . )

- Transform T : matrix A undergoes a similarity transform

=⇒ Â = TAT−1, and λ(A) = Λ(Â)

( Verification: Â(Txj) = λjTxj . )

□ Conjugation: Āx̄j = λ̄jx̄j,

1.3 Invariant subspaces

A subspace X is an invariant subspace of A if for any x ∈ X , we have Ax ∈ X .

Any subset of eigenvectors of A, with the same eigenvalue or multiple distinct

eigenvalues, spans an invariant subspace, and vice versa.

In particular, an eigenvector of A spans a one-dimensional invariant subspace

associated with λj.

◦ All eigenvectors of A associated with a distinct eigenvalue λj span an invariant

subspace with dimension equal to the geometric multiplicity mj,g/

◦ The dimension of the largest invariant subspace associated with λj is the alge-

braic multiplicity mj of λj.

◦ One can get a unitary basis U for any invariant subspace, by an orthogonaliza-

tion procedure, such as the Gram-Schmidt procedure.
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1.4 Gershgorin discs & theorem

◦ Gershgorin discs:

{Di(A) = D(aii, ri) | center aii, radius ri =
∑

j ̸=i |aij|, i = 1 : n}

◦ Gershgorin theorem:

Any eigenvalue λ of A lies in one of the Gershgorin disks: i.e., |λ− aii| ≤ ri for

some i.

Proof sketch. For every λ, there exists x ̸= 0 such that Ax = λx. Let i =

argmaxj |xj|. Then, (aii − λ) = −
∑

j ̸=i aijxj/xk.

◦ If the discs are disjoint, then each disc contains one and only eigenvalue. If

the union of k discs is disjoint from the rest, then the union contains exactly k

eigenvalues.

Proof. A sketch. We introduce a simple and useful morphing and variation technique.

Let C(t) = tA+ (1− t)D, t ∈ [0, 1], morphing between A and its diagonal matrix D.

We have Cii(t) = aii, i.e., the disc centers are t-invariant. The radii change as t · ri.

If the discs of A are disjoint, so are those of C(t), t ∈ [0, 1). Every eigenvalue λ(C(t))

is a continuous functions of t. If an eigenvalue migrates from one disk of C(0) = D

to join another eigenvalue in a disk of C(1) = A, it must go across the strip dividing

the departure disk and the arrival disk, contrary to the continuity of each and every

eigenvalue. A similar argument supports the second statement.

Some simple ways to tighten the bounds:

◦ Use the Gershgorin disks of AT as well |λ − aii| ≤ min{ri, ci}, where ci =∑
j ̸=i |aj,i| is the sum of column-i without aii. That is, |λ− aii| ≤ min{ri, ci}.

◦ Scaling, D−1AD, |λ− aii| ≤ min{
∑

j ̸=i |d
−1
i aijdj|,

∑
j ̸=i |d

−1
j ajidi|}
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2 Eigenvalue decomposition: diagonalizable

2.1 Spectral transform by the eigenvector matrix

A matrix is diagonalizable if it has a complete system of eigenvectors and is trans-

formed into diagonal form by the eigenvector matrix. Let X = [x1, · · · , xn] be the

eigenvector matrix. Then X is invertible.

It is straightforward to verify the following:

▷ A sufficient condition. If the eigvalues of A are all distinct from each other, then

A is diagonalizable

▷ The necessary and sufficient condition: A is diagonalizable if and only if for ev-

ery eigenvalue λj, mj,g = mj, the geometric multiplicity is equal to the algebraic

multiplicity

▷ AX = XΛ, where Λ = diag(λ1, · · · , λn).

▷ EVD of A: A = XΛY H. Y H ≜ X−1.

Remark: A is the product of three factors, the right eigenvector matrix, the left eigenvector matrix,

and the diagonal eigenvalue matrix. We use the term “decomposition”, instead of “factorization”,

to indicate that the decomposition process in general can not be done in a finite number of

factorization steps (with arithmetic operations and simple root extraction operations), according

the Abel’s theorem.

▷ The left eigenvector matrix : Y HA = ΛY H,. Y H = X−1

▷ EVD of a matrix polynomial: Ak = XΛkY H =⇒ p(A) = Xp(Λ)Y H

▷ EVE of analytic matrix functions: e.g. exp(A) = X exp(Λ)Y H

▷ If A is nonsingular in addition, A−k = XΛ−kY H, k ≥ 0

7



Xiaobai’s notes Graph/Matrix: Spectral Theory & Computation Spring 2024

2.2 Information propagation or modulation

An alternative view of the EVD is the expansion of A into additive spectral compo-

nents:

Ak =
n∑

j=1

λk
jxjy

H
j , k ≥ 1. (2)

Every rank-1 term represents the spectral triple: (λk
j , xj, yj), only the eigenvalue

changes with k.

Scale A so that ρ(A) = 1. Then,

Ak = Bk + Ek

Bk =
∑
|λj |=1

λk
j xj y

H
j ,

Ek =
∑
|λj |<1

λk
j xj y

H
j → 0 as k → ∞.

(3)

where the eigenvalues are indexed from the largest (most dominant) in magnitude to

the smallest (least dominant). Remark: Bk is indeed the k-th power of B, not a

notation. The same with Ek. By the spectral split, Bj × Ej′ = 0, j, j ≥ 1.

◦ Matrix Ek converges to zero, Ek → 0, the components with smaller eigenvalues in

magnitude decay faster

◦ Matrix Bk remains of rank q, q is the multiplicity of λ1

If λ1 = 1, then Bk converges to the rank-q matrix

If λ1 = −1, then the subsequence B2k converges to the rank-q matrix

if λ1 = ei2π/m, m ∈ N, then the subsequence Bmk converges to the rank-q matrix,

including the two previous cases
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Diagonalizable matrices are further categorized as normal matrices or otherwise.

The eigenvector matrix of a normal matrix is unitary or orthogonal. Two subclasses of

normal matrices are Hermitian matrices and circulant (periodic) convolution matrices.

2.3 Symmetric eigenvalue decomposition

Let A be a Hermitian matrix, AH = A. If A is real-valued, it is symmetric AT = A.

The adjacency matrix for an undirected graph is symmetric.

▷ The eigenvalues of A are real valued: λ(A) ∈ R.

Consequently, the eigenvalues can be put in non-descending (or not ascending or-

der), λj ≤ λj+1

▷ The eigenvectors associated with two different eigenvalues are orthogonal to each

other. Recall that the invariant subspace associated with each eigenvalue has or-

thogonal basis.

▷ A simple proof can be found in the Schur decomposition, by inductive construction.

▷ EVD of A: A = UΛUH, where U is unitary if A is complex-valued and orthogonal

if A is real-valued

2.3.1 The Rayleigh quotient & Courant-Fischer theorem

R(x,A) ≜
xHAx

xHxx
, x ̸= 0 (4)

is a continuous variation embedding of the spectrum

λmin ≤ R(x,A) ≤ λmax (5)

and that for any λ ∈ [λmin, λmax], there exist x ̸= 0 such that R(x,A) = λ.
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Suppose we index the eigenvalues as follows,

λmin = λ1 ≤ λ1 ≤ · · ·λn−1 ≤ λn = λmax

By the direct use of A’s EVD, one can get the Courant-Fischer’s theorem on min-max

or max-min representation of the eigenvalues,

λ1 = min
x ̸=0

R(x,A),

λj = min
xH[x1,··· ,xj−1]=0

R(x,A), j > 1

= max
xH[xj+1,··· ,xn]=0

R(x,A)

= min
X:dim(X)=j

max
x∈X

R(x,A)

= max
X:dim(X)=1+n−j

min
x∈X

R(x,A)

(6)
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3 Eigenvalue decomposition: general

We consider the eigenvalue decomposition (EVD) of a square matrix in general. In

particular, the adjacency matrices for digraphs may not be diagonalizable. The EVD

may take different forms and structures, including the Schur decomposition, the Jor-

dan decomposition, and some in between.

In Schur decomposition, A = QRQ H, where Q is unitary, R is (upper) triangular.

The diagonal elements of R are the eigenvalues of R and A, they may be in arbitrary

order. We describe the Jordan decomposition, A = XΛJX
−1, where X is the Jordan

vector matrix, and ΛJ is of the most compact triangular form, it is bi-diagonal. The

eigenvalues of ΛJ are on the diagonal, clustered by their algebraic multiplicities.

3.1 The Schure decomposition

The Schur decomposition is A = QRQT, whereQ is unitary and R is upper triangular.

The eigenvalues of A are on the diagonal of R. This decomposition is easy to prove

by inductive construction. It is true for n = 1. In the induction step for n > 1, let

An = A. We get an eigenpair of An and make a reduction in size via a similarity

unitary transform. Let (λ1, q1 be an (arbitrary) eigenpair of An, with qHn qn = 1. Let

Hn be an Householder matrix (unitary) with Hne1 = q1. Then,

An = Hn

 λ1 rT1

0 An−1

HH
n = Hn (1⊕Qn−1)

 λ1 rT1

0 Rn−1

HH
n

(
1⊕QH

n−1

)
= QnRnQ

H
n

(7)

where by induction assumption that An−1 = Qn−1Rn−1Q
n−1 with Un−1 being unitary

and Rn−1 being upper triangular.

□ When A is normal, R is diagonal.

□ When A is non-normal but diagonalizable, R is not diagonal. In detail, A =
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XΛX−1. Let X = QRx be the QR factorization of X. Then, RX is nonsingular,

and A = QRQH with R = (RxΛR
−1
x ) indicating the deviation of A from a

normal matrix. In detail, when R is known, we have RRx = RxΛ, i.e., Rx is

the eigenvector matrix of R when A is diagonalizable.

□ The computational procudre is fine grained.

3.2 Spectral analysis via the distinct invariant subspaces

In general, A has p ≤ n distinct eigenvalues. Every distinct eigenvalue λj is associ-

ated with an unique invariant subspace χj of dimension mj, which is the algebraic

multiplicity of λj. Let Xj be a particular set of the basis vectors. Then

AXj = XjAj,
∑
j=1:p

mj = n. (8)

Let X = [Xi, X2, · · · , Xp]. Then, X is nonsigular and

AX = X diag(Aj, j = 1 : p) (9)

That is, X transforms A into a block diagonal matrix.

The eigenvalues of Aj are equal to λj. Specifically, λj = trace(Aj)/mj. The eigen-

values of Aj may or may not be explicit as matrix elements. Here, Aj is diagonalizable

if the geometric multiplicity of λj is equal to its algebraic multiplicity. When Aj is

not diagonalizable, we have more detailed view into the structure of the invariant

subspace.
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3.3 The Schur basis

Let Aj = UjR̂jU
T
j be a Schur decomposition of Aj. Let XjUj = QjRx,j be a QR

factorization of XjUj. Then, AQj = QjRjQ
H
j with Rj = Rx,jR̂jR

−1
x,j. We may refer

Qj as a Schur basis for the inviant subspace span(Xj).

Let X = [Q1, · · · , Qp]. Then, X transforms A into a block diagonal matrix

diag(Rj, j = 1 : p), with the upper triangular submatrices Rj on the diagonal. Ma-

trix Q may or may not be unitary, although each block column Qj has orthonormal

columns.

3.4 Similarity reduction to the Jordan form

Every (upper) Rj − λjI matrix can be transformed into a Jordan form.

3.5 The Jordan matrix

We introduce a non-diagonalizable matrix in a very simple form. The Jordan matrix

Jn is the shift matrix, Jn = [0, In(:, 1 : n− 1)]. It is upper triangular with nonzero on

the supper diagonal only. For example,

J4 =


0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

 , J(i′, j′) = δi′(j′−1)

Matrix Jn has the zero eigenvalue of algebraic multiplicty n, Jn
n = 0. It has only one

eigenvector, which is e1, and therefore the geometric multiplicity of the eigenvalue is

1. It can be verified that Jk
n [e1. · · · , ek] = 0, 1 ≤ k < n, ek is the k-th column of the

identity matrix I.
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3.6 The Jordan decomposition

The Jordan decomposition captures more of the connection and difference between

diagonalizable and non-diagonalizable matrices.

Next, we consider the Jordan basis for each of the invariant subspaces.

3.7 The Jordan bases

With the Jordan basis for the invariant subspace associated with λj, Aj is of the most

compact form. It is block diagonal, each block on the diagonal is a Jordan block.

Specifically, a Jordan basis is composed of qj ≥ 1 subsets, Xj = [Xjk | k = 1 : qj].

Each subset Xjk spans an invariatn subspace associated with λj,

AXjk = Xjk (λjIjk + Jjk) ,
∑

k=1:qj

jk = mj , n =
∑
j

mj (10)

where Jk is of the standardized Jordan form.

□ For each Jordan subset Xjk , only the leading vector is an eigenvector, the rest

follow the Jordan chain,

Ax1 − λjx1 = 0, (A− λj)xq = xq−1, 1 < q ≤ jk (11)

or,

(A− λjI)
q [x1, · · · , xq] = 0, 1 ≤ q ≤ jk. (12)

The equations of (12) sugget a more robust routine for obtaining a basis for the

invariant subspace associated with λj.

□ For each distinct eigenvalue λj, its geometric multiplicity mj,g is the number of

the Jordan blocks associated with λj, or equivalently, the number of eigenvectors

associated with λj, 1 ≤ mj,g ≤ mj
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□ The algebraic multiplicity mj of eigenvalue λj is equal to the sum of the Jordan

block sizes jk, mj =
∑

k=1:qj
jk.

□ With all Jordan vectors associated with a distinct eigenvalue λj,

AXj = XjΛj , Λj ≜ (λjImj + diag(Jjk)), j = 1, · · · , p (13)

□ Matrix A is diagonalizable if and only if all Jordan blocks Jjl are of size 1.

We give a simple proof of Jordan form at the end of the section.

3.8 The spectral transform by the Jordan matrix

The Jordan vector matrix isX = [Xi | j = 1 : p], where p ≥ 1 is the number of distinct

eigenvalues λj. It transforms A into the bidiagonal form: ΛJ = diag(Λj, j = 1 : p).

We have the following,

AX = X ΛJ

=⇒ A = XΛJX
−1 = XΛJY

H, Y H = X−1

=⇒ Ak = XΛk
JY

H, k ≥ 1

=⇒ p(A) = Xp(ΛJ)Y
H

=⇒ exp(A) = X exp(ΛJ)Y
H

(14)

3.8.1 Information propagation or modulation

Assume that ρ(A) = 1.

Ak = Bk + Ek

Bk =
∑
|λj |=1

XjΛ
k
j Y

H
j

Ek =
∑
|λj |<1

XjΛ
k
j Y

H
j → 0 as k → ∞.

(15)
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If A is nonnegative, irreducible and aperiodic, then λ1 = 1 is simple, and Ak converges

to x1y
T
1 > 0.
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4 Graph Laplacian spetral

4.1 The Laplacian matrices

□ G(V,E,W ) undirected, nonnegative weights on edges

n = |V |, m = |E|, : W : E → R≥0

□ A: adjacency matrix, symmetric

A(i, j) > 0 ⇐⇒ (i, j) ∈ E

AT = A, d = Ae (the degree vector)

□ B: incidence matrix, n×m

B(:, ℓ) = ±(ei − ej) with ℓ = (i, j) ∈ E

eTB = 0, BTe = 0

need a modification to admit self-loops j = i

□ B+: incidence matrix with different edge encoding

B+(:, ℓ) = (ei + ej) with ℓ = (i, j) ∈ E

This is used in some textbooks or literature articles

□ D: D = diag(d)

□ L: the (plain) Laplacian matrix

◦ L = B diag(W )BT

It is the accumulation of edge Laplacians

L =
∑

(i,j)∈E

(ei − ej)(ei − ej)
T (16)

It can be split in different ways

17
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◦ L = D − A

invariant to self-loops: L = (D +Do)− (A+Do)

◦ L is symmetric, non-negative definite

◦ EVD: L = QΛQT

a complete set of orthogonal eigenvectors with axial weights λj ≥ 0

□ With B+, we may define L+ = B+B
T
+ = D + A.

□ Then, D = (L+ + L−1)/2 and A = (L+ − L−1)/2, where L− = D − A.

□ When G is d-regular (a constant degree d)

- L = dI − A

- λj(A) = λj(L)− d, a uniform shifting

Example of regular graphs: cliques, k-dimensional torus graphs, k-dimensional

hypercube, buckyball (C60), or constructed by a random graph generator with

constant degrees

□ The Rayleigh quotient with L

R(x | L̂) = xTx, xTx = 1

=
∑

(i,j)∈E

xT(ei − ej) · (ei − ej)
Tx

=
∑

(i,j)∈E

(x(i)− x(j))2

=
1

2

∑
i∈V

∑
j∈N (i)

(x(i)− x(j))2

R(x1 | L̂) = 0, x1 = e

(17)

The last two expressions: the variation of x over any edge, the variation of x over

the neighborhood graph N (i) of any vertex

18
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4.2 Invariance subspaces

4.2.1 The null space

◦ BTe = 0 → Le = 0 and 0 ∈ Λ(L)

◦ The null space of L is one dimensional ⇐⇒ G is connected ⇐⇒ λ2 > 0

◦ G has exactly p connected components ⇐⇒ p = dim(null(L))

4.2.2 The Fiedler value & subspace

Assume G is connected, i.e., λ2(L) > 0.

◦ The Rayleigh quotient with L

◦ The Fiedler value is the least variation among all vertex functions, x : V → R subject

to the zero sum and the unit length,

λ2 = min
x

xTLx =
∑

(i,j)∈E

(x(i)− x(j))2,

s.t. xTe = 0, xTx = 1,

(18)

The Fiedler subspace is the space spanned by all Fiedler vectors (the minima):

x2 = arg min
xTe=0

xTx=1

xTLx

s.t. xTe = 0, xTx = 1,

(19)

◦ Edge partition and vertex partition by a Fielder vector

19
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xTLx =
∑

(i,j)∈E

i,j∈V+

(x(i)− x(j))2

+
∑

(i,j)∈E

i,j∈V−

(x(i)− x(j))2

+
∑

(i,j)∈E

x(i)·x(j)<0

(x(i)− x(j))2

(20)

A simple construction for mental experiment (not to blind to an optimization pro-

cess): Let G be a graph of two cliques Kn1 and Kn2 (or two cycles Cn1 and Cn2)

connected by a single edge, n = n1 + n2, all edge unweighted. Each subgraph is

a community. Consider two particular cases: case (i) n1 = n2 = n/2; case (ii)

n1 = n− 2, n2 = 2.

– Why the values of x2 at the border/boundart nodes of V+ and V− are closer to

the zero ?

– how x(i) is affected by the difference between |V+| and |V−| ?

– how many zero elements in x2?

◦ The Fiedler partion is unique ⇐⇒ λ2 < λ3

◦ If G is the hypercube of k-dimensions, then n = 2k, λ2(L) = 2, with multiplicty k.

◦ The extension to the weighted case is straightforward.

4.2.3 The normalized Laplacian

The normalized Laplacian is related to the probabilistic random-walk transition ma-

trix and the (geometrix) similarity matrix of the local neighborhoods.
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▷ B̂:

B̂ = D−1/2
v BD1/2

e (21)

where De = diag(W ), with the edge weights on the diagonal. Each row of B̂ is

normalized to the unit length.

By the same scalings, we have B̂+.

▷ The normalized Laplacian:

L̂ ≜ B̂B̂T

= D−1/2LD−1/2

= I − Â, Â = D−1/2AD−1/2

(22)

▷ Similarly, we have L̂+, which is elementwise nonnegative and spectrally nonnegative

definite.

We recognize that L̂+(i, j) is a geometric measure of the similarity between the neigh-

borhoods N (i) and N (j). Equivalently, eeT− L̂+ = eeT− Â is the matrix of pairwise

distances among all neighborhoods.

This property makes the following simple connection important:

L̂+ = 2I − L̂ (23)

The relationship is a negative flip followed by a shift. When we know one of them,

we know the other.

▷ The spectral connection to the random-walk transition matrix

Aw ∼ Â, where Aw = AD−1 and ∼ denotes the similar transform relationship/
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λj(Aw) = λj(Â) = λj ∈ [−1, 1], j = 1 : n

λj(L̂) = 1− λj(Â) ∈ [0, 2]

The Perron value of Aw is mapped to the smallext eigenvalue of L̂

λj(L̂+) = 1 + λj(Â) ∈ [0, 2].

The Perron value of Aw (equal to 1) is shifted to the Perron value of L̂+ (equal to 2);

the smallest eigenvalues of L̂+ are the largest eigenvalue of L̂+.

EVDs:

Â = QΛQT, Aw = XΛX−1, X = D1/2Q

When G is regular with a constant degree d, Aw = A/d, a uniform scaling.

Variational analysis of the normalized Laplacians

The Rayleigh quotient (uniform wedge weights)

R(x | L̂) = xTD−1/2LD−1/2x, xTx = 1

=
∑

(i,j)∈E

xTD−1/2(ei − ej) · (ei − ej)
TD−1/2x

=
∑

(i,j)∈E

(
x(i)√
d(i)

− x(j)√
d(j)

)2

=
1

2

∑
i∈V

1

d(i)

∑
j∈N (i)

(
x(i)−

√
d(i)

d(j)
x(j)

)2

R(x1 | L̂) = 0, x1 = d1/2

(24)

The relationship between low-degree nodes and high-degree neighbors is changed by

the vertex scaling.
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It is straightforward to get the generalized expression of the Rayleigh quotient

with ununiform edge weights.

The normalized cut

The Fiedler value is the least variation among all vertex functions, x : V → R

subject to the orthogonality to x1 and the unit length

λ2 = min
y

xTL̂x

s.t. xTx1 = 0, xTx = 1

(25)

The Fiedler subspace is the space spanned by all Fiedler vectors (the minima):

x2 = argmin
y

xTL̂x

s.t. xTx1 = 0, xTx = 1

(26)

Edge partition and vertex partition by a Fielder vector of the normalized Lapla-

cian is similar to that without normalization.

4.2.4 Laplacian spectral embedding

A Laplacian spectral embedding serve a few objectives

□ vertex embedding: every vertex gets an encded vector in a geometric space

(for down-stream tasks)

□ relatively low dimension, in comparison to the vertex size

□ relatively high accuracy in maintaining the pairwise neighborhood similarities,

i.e., accurate reconstruction of L̂+

(an unsupervised approach)
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The basic approach is simple:

L̂+ = QkΛkQk +Qn−kΛn−kQn−k

L̂+,k = QkΛkQk

(27)

where Λk is composed of the largest k eigenvalues of L̂+, related to the smallest k

eigenvalues of L̂

With a spectral approximation L̂+,k,

◦ the code for vertex i is Q(i, 1 : k)
√
Λk

◦ the embedding dimension, i.e., the code length, is k

◦ The residual error in the approximate reconstruction is Rk = Qn−kΛn−kQn−k with

∥Rk∥2 = max(Λn−k) and ∥Rk∥F = ∥Λn−k∥F

Algorithm prototype

Let τ be a specified threshold on residual error

◦ compute µ = ∥L̂+∥2F
◦ initialization: Λ = ∅, Q = ∅, Λ = 0, k = 0

◦ while (µ− γ)/µ > τ

- advance the index: k+= 1

- compute the next eigenpair: (λk, qk)

subject to the conditions: qTk Q = 0, qTk qk = 1

- update: Λ+= λk; Q+= qk; Γ+= λ2
k;

◦ return: k, Qk := Q, Λk := Λ
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4.2.5 Laplacians of bipartites & digraphs

There are ongoing efforts to extend Laplacians to directed graphs (digraphs). We

exclude any symmetrization method that ignores edge orientation in a digraph.

In this section, we introduce a simple way with regard to some important down-

stream graph analysis tasks. A digraph G(V,E) may be viewed as a bipartite

G(Vs, Vt, E), E ∈ Vs × Vt. Every vertex v ∈ V corresponds to a source node vs

in Vs and a target node vt in Vt.

The incidence matrix:

Bts(:, ℓ) = ±(eit − ejs), ℓ = (it, js), it ∈ Vt, js ∈ Vs (28)

The adjacency matrix:

Ats ≜
target

source

 0 A

AT 0

 , dts = Atse =

 din

dout

 (29)

The plain Laplacian:

Lts = BtsB
T
ts =

 Din −A

−AT Dout

 , Ltse = 0 (30)

The normalized Laplacian:

L̂ts = B̂tsB̂
T
ts = I − Âts

Âts =

 0 D
−1/2
in AD

−1/2
out(

D
−1/2
in AD

−1/2
out

)T
0


L̂ts

 d
1/2
in

d
1/2
out

 = 0

(31)
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